Update README.md
Browse filesOptimization for Stable Diffusion v1-4
FP16 Precision: Reduces memory usage and speeds up inference.
Batch Processing: Generate multiple images in a single request to maximize GPU utilization.
Custom LoRA Training: Train on specific datasets to customize the model for unique themes (e.g., luxury, fantasy).
This approach lets you use Stable Diffusion v1-4 for photorealistic, high-quality image generation, deployable in a user-friendly interface. Let me know if you need help fine-tuning or scaling this setup!
README.md
CHANGED
@@ -9,4 +9,101 @@ license: bigscience-openrail-m
|
|
9 |
sdk_version: 5.12.0
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
sdk_version: 5.12.0
|
10 |
---
|
11 |
|
12 |
+
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # GPU support
|
13 |
+
pip install diffusers transformers flask pillow accelerate
|
14 |
+
from diffusers import StableDiffusionPipeline
|
15 |
+
import torch
|
16 |
+
|
17 |
+
# Authenticate Hugging Face
|
18 |
+
from huggingface_hub import login
|
19 |
+
login(token="your_hugging_face_token")
|
20 |
+
|
21 |
+
# Load Stable Diffusion v1-4
|
22 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
23 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
24 |
+
pipe = pipe.to("cuda") # Use GPU for faster performance
|
25 |
+
prompt = "A luxurious futuristic bathroom with marble walls and golden accents, panoramic views of a tropical jungle, ultra-realistic, 32k resolution"
|
26 |
+
num_steps = 50 # Number of diffusion steps
|
27 |
+
guidance_scale = 7.5 # Higher = more faithful to the prompt
|
28 |
+
|
29 |
+
# Generate an image
|
30 |
+
image = pipe(prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale).images[0]
|
31 |
+
|
32 |
+
# Save the image
|
33 |
+
image.save("generated_image.png")
|
34 |
+
from flask import Flask, request, jsonify, send_file
|
35 |
+
from diffusers import StableDiffusionPipeline
|
36 |
+
import torch
|
37 |
+
|
38 |
+
app = Flask(__name__)
|
39 |
+
|
40 |
+
# Load Stable Diffusion v1-4
|
41 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
42 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
43 |
+
pipe = pipe.to("cuda")
|
44 |
+
|
45 |
+
@app.route("/generate", methods=["POST"])
|
46 |
+
def generate_image():
|
47 |
+
data = request.json
|
48 |
+
prompt = data.get("prompt", "A beautiful fantasy landscape")
|
49 |
+
num_steps = data.get("steps", 50)
|
50 |
+
guidance_scale = data.get("guidance_scale", 7.5)
|
51 |
+
|
52 |
+
# Generate image
|
53 |
+
image = pipe(prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale).images[0]
|
54 |
+
output_path = "output.png"
|
55 |
+
image.save(output_path)
|
56 |
+
|
57 |
+
return send_file(output_path, mimetype="image/png")
|
58 |
+
|
59 |
+
if __name__ == "__main__":
|
60 |
+
app.run(host="0.0.0.0", port=5000)
|
61 |
+
<!DOCTYPE html>
|
62 |
+
<html lang="en">
|
63 |
+
<head>
|
64 |
+
<meta charset="UTF-8">
|
65 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
66 |
+
<title>Stable Diffusion Generator</title>
|
67 |
+
</head>
|
68 |
+
<body>
|
69 |
+
<h1>Stable Diffusion v1-4 Image Generator</h1>
|
70 |
+
<form id="image-form">
|
71 |
+
<label for="prompt">Prompt:</label><br>
|
72 |
+
<input type="text" id="prompt" name="prompt" required><br><br>
|
73 |
+
<label for="steps">Inference Steps:</label><br>
|
74 |
+
<input type="number" id="steps" name="steps" value="50"><br><br>
|
75 |
+
<label for="guidance_scale">Guidance Scale:</label><br>
|
76 |
+
<input type="number" id="guidance_scale" name="guidance_scale" value="7.5"><br><br>
|
77 |
+
<button type="submit">Generate Image</button>
|
78 |
+
</form>
|
79 |
+
|
80 |
+
<h2>Generated Image:</h2>
|
81 |
+
<img id="generated-image" alt="Generated Image" style="max-width: 100%;">
|
82 |
+
|
83 |
+
<script>
|
84 |
+
document.getElementById("image-form").addEventListener("submit", async (event) => {
|
85 |
+
event.preventDefault();
|
86 |
+
|
87 |
+
const prompt = document.getElementById("prompt").value;
|
88 |
+
const steps = document.getElementById("steps").value;
|
89 |
+
const guidanceScale = document.getElementById("guidance_scale").value;
|
90 |
+
|
91 |
+
const response = await fetch("http://localhost:5000/generate", {
|
92 |
+
method: "POST",
|
93 |
+
headers: {
|
94 |
+
"Content-Type": "application/json",
|
95 |
+
},
|
96 |
+
body: JSON.stringify({ prompt, steps, guidance_scale: guidanceScale }),
|
97 |
+
});
|
98 |
+
|
99 |
+
if (response.ok) {
|
100 |
+
const blob = await response.blob();
|
101 |
+
const url = URL.createObjectURL(blob);
|
102 |
+
document.getElementById("generated-image").src = url;
|
103 |
+
} else {
|
104 |
+
console.error("Error generating image");
|
105 |
+
}
|
106 |
+
});
|
107 |
+
</script>
|
108 |
+
</body>
|
109 |
+
</html>
|