openfree commited on
Commit
01d3ddb
·
verified ·
1 Parent(s): b502adb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +196 -67
app.py CHANGED
@@ -4,12 +4,10 @@ from transformers import AutoConfig, AutoModelForCausalLM
4
  from janus.models import MultiModalityCausalLM, VLChatProcessor
5
  from janus.utils.io import load_pil_images
6
  from PIL import Image
7
-
8
  import numpy as np
9
  import os
10
  import time
11
- import spaces # Import spaces for ZeroGPU compatibility
12
-
13
 
14
  # Load model and processor
15
  model_path = "deepseek-ai/Janus-Pro-7B"
@@ -30,7 +28,6 @@ cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
30
 
31
  @torch.inference_mode()
32
  @spaces.GPU(duration=120)
33
- # Multimodal Understanding function
34
  def multimodal_understanding(image, question, seed, top_p, temperature):
35
  # Clear CUDA cache before generating
36
  torch.cuda.empty_cache()
@@ -54,7 +51,6 @@ def multimodal_understanding(image, question, seed, top_p, temperature):
54
  conversations=conversation, images=pil_images, force_batchify=True
55
  ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
56
 
57
-
58
  inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
59
 
60
  outputs = vl_gpt.language_model.generate(
@@ -73,7 +69,6 @@ def multimodal_understanding(image, question, seed, top_p, temperature):
73
  answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
74
  return answer
75
 
76
-
77
  def generate(input_ids,
78
  width,
79
  height,
@@ -113,8 +108,6 @@ def generate(input_ids,
113
  img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
114
  inputs_embeds = img_embeds.unsqueeze(dim=1)
115
 
116
-
117
-
118
  patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
119
  shape=[parallel_size, 8, width // patch_size, height // patch_size])
120
 
@@ -129,8 +122,6 @@ def unpack(dec, width, height, parallel_size=5):
129
 
130
  return visual_img
131
 
132
-
133
-
134
  @torch.inference_mode()
135
  @spaces.GPU(duration=120) # Specify a duration to avoid timeout
136
  def generate_image(prompt,
@@ -169,28 +160,82 @@ def generate_image(prompt,
169
  parallel_size=parallel_size)
170
 
171
  return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS) for i in range(parallel_size)]
172
-
173
 
174
- # Gradio interface
175
- with gr.Blocks() as demo:
176
- gr.Markdown(value="# AutoMultimodal")
177
- with gr.Row():
178
- image_input = gr.Image()
179
- with gr.Column():
180
- question_input = gr.Textbox(label="Question")
181
- und_seed_input = gr.Number(label="Seed", precision=0, value=42)
182
- top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
183
- temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
184
 
185
- understanding_button = gr.Button("Chat")
186
- understanding_output = gr.Textbox(label="Response")
187
-
188
- examples_inpainting = gr.Examples(
189
- label="Multimodal Medical Prompts",
190
- examples=[
191
- [
192
- """
193
- You are an AI assistant trained to analyze medical images. Analyze the attached fundus photograph in extreme detail, following a structured approach analogous to an ophthalmologist's examination. Provide a differential diagnosis solely based on this image analysis, without assuming any clinical history. Structure your response as follows:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194
 
195
  Analysis Methodology (Concise): List, very briefly, the key anatomical areas/features you will assess, in the order of assessment (e.g., Optic Disc, Vessels, Macula, Periphery, Overall Quality). Do not describe the analysis process in detail here – just name the areas.
196
  Detailed Image Analysis & Percentage Breakdown: Analyze the image, addressing each area listed in Step 1. For each area:
@@ -200,43 +245,74 @@ For any areas where analysis is incomplete (<100%), briefly explain the limiting
200
  Differential Diagnosis (Image-Based Only): Based solely on your Step 2 analysis, provide:
201
  Most Likely Diagnosis (from image findings).
202
  Other Possible Diagnoses (from image findings).
203
- Rationale: For each diagnosis, briefly link specific image findings to the diagnostic criteria.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
 
205
- """ , "fundus.webp",
206
- ],
207
- ],
208
- inputs=[question_input, image_input],
209
- )
210
-
211
-
212
- gr.Markdown(value="# Text-to-Image Multimodal Generation")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213
 
214
-
215
-
216
- with gr.Row():
217
- cfg_weight_input = gr.Slider(minimum=1, maximum=10, value=5, step=0.5, label="CFG Weight")
218
- t2i_temperature = gr.Slider(minimum=0, maximum=1, value=1.0, step=0.05, label="temperature")
219
-
220
- prompt_input = gr.Textbox(label="Prompt. (Prompt in more detail can help produce better images!)")
221
- seed_input = gr.Number(label="Seed (Optional)", precision=0, value=12345)
222
-
223
- generation_button = gr.Button("Generate Images")
224
-
225
- image_output = gr.Gallery(label="Generated Images", columns=2, rows=2, height=300)
226
-
227
- examples_t2i = gr.Examples(
228
- label="Text to image generation examples.",
229
- examples=[
230
- "Master shifu racoon wearing drip attire as a street gangster.",
231
- "The face of a beautiful girl",
232
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
233
- "A glass of red wine on a reflective surface.",
234
- "A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
235
- "The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.\n\nAbove the eye, there's a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail. \n\nOverall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component\u2014from the intricate designs framing the eye to the ancient-looking stone piece above\u2014contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.",
236
- ],
237
- inputs=prompt_input,
238
- )
239
-
240
  understanding_button.click(
241
  multimodal_understanding,
242
  inputs=[image_input, question_input, und_seed_input, top_p, temperature],
@@ -249,5 +325,58 @@ Rationale: For each diagnosis, briefly link specific image findings to the diagn
249
  outputs=image_output
250
  )
251
 
252
- demo.launch(share=True)
253
- # demo.queue(concurrency_count=1, max_size=10).launch(server_name="0.0.0.0", server_port=37906, root_path="/path")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  from janus.models import MultiModalityCausalLM, VLChatProcessor
5
  from janus.utils.io import load_pil_images
6
  from PIL import Image
 
7
  import numpy as np
8
  import os
9
  import time
10
+ import spaces
 
11
 
12
  # Load model and processor
13
  model_path = "deepseek-ai/Janus-Pro-7B"
 
28
 
29
  @torch.inference_mode()
30
  @spaces.GPU(duration=120)
 
31
  def multimodal_understanding(image, question, seed, top_p, temperature):
32
  # Clear CUDA cache before generating
33
  torch.cuda.empty_cache()
 
51
  conversations=conversation, images=pil_images, force_batchify=True
52
  ).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
53
 
 
54
  inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
55
 
56
  outputs = vl_gpt.language_model.generate(
 
69
  answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
70
  return answer
71
 
 
72
  def generate(input_ids,
73
  width,
74
  height,
 
108
  img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
109
  inputs_embeds = img_embeds.unsqueeze(dim=1)
110
 
 
 
111
  patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
112
  shape=[parallel_size, 8, width // patch_size, height // patch_size])
113
 
 
122
 
123
  return visual_img
124
 
 
 
125
  @torch.inference_mode()
126
  @spaces.GPU(duration=120) # Specify a duration to avoid timeout
127
  def generate_image(prompt,
 
160
  parallel_size=parallel_size)
161
 
162
  return [Image.fromarray(images[i]).resize((768, 768), Image.LANCZOS) for i in range(parallel_size)]
 
163
 
164
+ # Gradio interface with improved UI
165
+ with gr.Blocks(theme=gr.themes.Soft(
166
+ primary_hue="blue",
167
+ secondary_hue="indigo",
168
+ )) as demo:
169
+ gr.Markdown(
170
+ """
171
+ # Deepseek Multimodal
172
+ ### Advanced AI for Visual Understanding and Generation
 
173
 
174
+ This powerful multimodal AI system combines:
175
+ * **Visual Analysis**: Advanced image understanding and medical image interpretation
176
+ * **Creative Generation**: High-quality image generation from text descriptions
177
+ * **Interactive Chat**: Natural conversation about visual content
178
+ """
179
+ )
180
+
181
+ with gr.Tabs():
182
+ # Visual Chat Tab
183
+ with gr.Tab("Visual Understanding", icon="image"):
184
+ with gr.Row(equal_height=True):
185
+ with gr.Column(scale=1):
186
+ image_input = gr.Image(
187
+ label="Upload Image",
188
+ type="numpy",
189
+ elem_classes="image-preview"
190
+ )
191
+
192
+ with gr.Column(scale=1):
193
+ question_input = gr.Textbox(
194
+ label="Question or Analysis Request",
195
+ placeholder="Ask a question about the image or request detailed analysis...",
196
+ lines=3
197
+ )
198
+ with gr.Row():
199
+ und_seed_input = gr.Number(
200
+ label="Seed",
201
+ precision=0,
202
+ value=42,
203
+ container=False
204
+ )
205
+ top_p = gr.Slider(
206
+ minimum=0,
207
+ maximum=1,
208
+ value=0.95,
209
+ step=0.05,
210
+ label="Top-p",
211
+ container=False
212
+ )
213
+ temperature = gr.Slider(
214
+ minimum=0,
215
+ maximum=1,
216
+ value=0.1,
217
+ step=0.05,
218
+ label="Temperature",
219
+ container=False
220
+ )
221
+
222
+ understanding_button = gr.Button(
223
+ "Analyze Image",
224
+ variant="primary",
225
+ size="lg"
226
+ )
227
+
228
+ understanding_output = gr.Textbox(
229
+ label="Analysis Results",
230
+ lines=10,
231
+ show_copy_button=True
232
+ )
233
+
234
+ gr.Examples(
235
+ label="Medical Analysis Examples",
236
+ examples=[
237
+ [
238
+ """You are an AI assistant trained to analyze medical images. Analyze the attached fundus photograph in extreme detail, following a structured approach analogous to an ophthalmologist's examination. Provide a differential diagnosis solely based on this image analysis, without assuming any clinical history. Structure your response as follows:
239
 
240
  Analysis Methodology (Concise): List, very briefly, the key anatomical areas/features you will assess, in the order of assessment (e.g., Optic Disc, Vessels, Macula, Periphery, Overall Quality). Do not describe the analysis process in detail here – just name the areas.
241
  Detailed Image Analysis & Percentage Breakdown: Analyze the image, addressing each area listed in Step 1. For each area:
 
245
  Differential Diagnosis (Image-Based Only): Based solely on your Step 2 analysis, provide:
246
  Most Likely Diagnosis (from image findings).
247
  Other Possible Diagnoses (from image findings).
248
+ Rationale: For each diagnosis, briefly link specific image findings to the diagnostic criteria.""",
249
+ "fundus.webp",
250
+ ],
251
+ ],
252
+ inputs=[question_input, image_input],
253
+ )
254
+
255
+ # Image Generation Tab
256
+ with gr.Tab("Image Generation", icon="wand"):
257
+ with gr.Column():
258
+ prompt_input = gr.Textbox(
259
+ label="Image Description",
260
+ placeholder="Describe the image you want to create in detail...",
261
+ lines=3
262
+ )
263
 
264
+ with gr.Row():
265
+ cfg_weight_input = gr.Slider(
266
+ minimum=1,
267
+ maximum=10,
268
+ value=5,
269
+ step=0.5,
270
+ label="Guidance Scale",
271
+ info="Higher values create images that more closely match your prompt"
272
+ )
273
+ t2i_temperature = gr.Slider(
274
+ minimum=0,
275
+ maximum=1,
276
+ value=1.0,
277
+ step=0.05,
278
+ label="Temperature",
279
+ info="Controls randomness in generation"
280
+ )
281
+ seed_input = gr.Number(
282
+ label="Seed (Optional)",
283
+ precision=0,
284
+ value=12345,
285
+ info="Set for reproducible results"
286
+ )
287
+
288
+ generation_button = gr.Button(
289
+ "Generate Images",
290
+ variant="primary",
291
+ size="lg"
292
+ )
293
+
294
+ image_output = gr.Gallery(
295
+ label="Generated Images",
296
+ columns=3,
297
+ rows=2,
298
+ height=500,
299
+ object_fit="contain"
300
+ )
301
+
302
+ gr.Examples(
303
+ label="Generation Examples",
304
+ examples=[
305
+ "Master shifu racoon wearing drip attire as a street gangster.",
306
+ "The face of a beautiful girl",
307
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
308
+ "A glass of red wine on a reflective surface.",
309
+ "A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
310
+ "The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time."
311
+ ],
312
+ inputs=prompt_input,
313
+ )
314
 
315
+ # Connect components
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
316
  understanding_button.click(
317
  multimodal_understanding,
318
  inputs=[image_input, question_input, und_seed_input, top_p, temperature],
 
325
  outputs=image_output
326
  )
327
 
328
+ # Add custom CSS
329
+ demo.load(css="""
330
+ .gradio-container {
331
+ font-family: 'Inter', -apple-system, sans-serif;
332
+ }
333
+ .image-preview {
334
+ min-height: 300px;
335
+ max-height: 500px;
336
+ width: 100%;
337
+ object-fit: contain;
338
+ border-radius: 8px;
339
+ border: 2px solid #eee;
340
+ }
341
+ .tabs.tab-nav {
342
+ border-bottom: 2px solid #eee;
343
+ margin-bottom: 2rem;
344
+ }
345
+ .tab-nav {
346
+ background: white;
347
+ padding: 1rem;
348
+ border-radius: 8px;
349
+ box-shadow: 0 2px 4px rgba(0,0,0,0.05);
350
+ }
351
+ .examples-table {
352
+ font-size: 0.9rem;
353
+ }
354
+ .gr-button.gr-button-lg {
355
+ padding: 12px 24px;
356
+ font-size: 1.1rem;
357
+ }
358
+ .gr-input, .gr-select {
359
+ border-radius: 6px;
360
+ }
361
+ .gr-form {
362
+ background: white;
363
+ padding: 20px;
364
+ border-radius: 12px;
365
+ box-shadow: 0 4px 6px rgba(0,0,0,0.05);
366
+ }
367
+ .gr-panel {
368
+ border: none;
369
+ background: transparent;
370
+ }
371
+ .footer {
372
+ text-align: center;
373
+ margin-top: 2rem;
374
+ padding: 1rem;
375
+ color: #666;
376
+ }
377
+ """)
378
+
379
+ # Launch the demo
380
+ if __name__ == "__main__":
381
+ demo.launch(share=True)
382
+