Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,21 @@
|
|
1 |
from flask import Flask, request, render_template, jsonify
|
2 |
import torch
|
3 |
from nltk.tokenize import word_tokenize
|
4 |
-
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer,
|
5 |
from LDict import find_legal_terms, legal_terms_lower
|
6 |
import nltk
|
7 |
-
import re
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
logging.basicConfig(level=logging.ERROR)
|
10 |
|
11 |
-
|
12 |
-
nltk.download('
|
|
|
|
|
13 |
|
14 |
app = Flask(__name__)
|
15 |
|
@@ -54,22 +60,17 @@ def summarize_text(text, method):
|
|
54 |
inputs_legal = port_tokenizer(text, max_length=1024, truncation=True, return_tensors="pt")
|
55 |
summary_ids_legal = model_port.generate(inputs_legal["input_ids"], max_length=250, num_beams=4, early_stopping=True)
|
56 |
Summarized_method2 = port_tokenizer.decode(summary_ids_legal[0], skip_special_tokens=True)
|
57 |
-
print("\n\n\n Summarized MEthod2",Summarized_method2, "\n\n\n\n")
|
58 |
cleaned_summary2 = remove_parentheses(Summarized_method2)
|
59 |
-
print("\n\n\n Cleaned Summarized MEthod2",cleaned_summary2, "\n\n\n\n")
|
60 |
#Paraphrase
|
61 |
p_inputs = tokenizer_t5.encode(cleaned_summary2, return_tensors="pt", max_length=512, truncation=True)
|
62 |
p_summary_ids = model_t5.generate(p_inputs, max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
|
63 |
method2 = tokenizer_t5.decode(p_summary_ids[0], skip_special_tokens=True)
|
64 |
-
print("\n\n\n Summarized Paraphrased MEthod2",method2, "\n\n\n\n")
|
65 |
return method2
|
66 |
|
67 |
elif method == "method1":
|
68 |
summarization_pipeline = pipeline('summarization', model=model_pegasus, tokenizer=tokenizer_pegasus, device=0 if device == "cuda" else -1)
|
69 |
method1 = summarization_pipeline(text, max_length=100, min_length=30, truncation=True)[0]['summary_text']
|
70 |
-
print("\n\n\n Summarized MEthod1",method1, "\n\n\n\n")
|
71 |
cleaned_summary1 = remove_parentheses(method1)
|
72 |
-
print("\n\n\n Summarized Cleaned MEthod1",cleaned_summary1, "\n\n\n\n")
|
73 |
return cleaned_summary1
|
74 |
|
75 |
|
@@ -86,17 +87,13 @@ def index():
|
|
86 |
if request.method == 'POST':
|
87 |
try:
|
88 |
input_text = request.form['input_text']
|
89 |
-
logging.info(f"Received data for translation: {input_text}") # Log incoming data
|
90 |
method = request.form['method']
|
91 |
|
92 |
simplified_text = simplify_text(input_text)
|
93 |
-
logging.info(f"Received data for translation: {simplified_text}")
|
94 |
summarized_text = summarize_text(simplified_text, method)
|
95 |
-
logging.info(f"Received data for translation: {summarized_text}")
|
96 |
|
97 |
return jsonify({
|
98 |
-
"summarized_text": summarized_text,
|
99 |
-
})
|
100 |
except Exception as e:
|
101 |
logging.error(f"Error occurred: {e}", exc_info=True)
|
102 |
return jsonify({"error": str(e)}), 500
|
@@ -106,18 +103,15 @@ def index():
|
|
106 |
def translate():
|
107 |
try:
|
108 |
data = request.get_json()
|
109 |
-
logging.info(f"Received data for translation: {data}") # Log incoming data
|
110 |
text = data['text']
|
111 |
translated_text = translate_to_hindi(text)
|
112 |
|
113 |
return jsonify({
|
114 |
-
"translated_text": translated_text
|
115 |
-
})
|
116 |
except Exception as e:
|
117 |
logging.error(f"Error occurred during translation: {e}", exc_info=True)
|
118 |
return jsonify({"error": str(e)}), 500
|
119 |
|
120 |
|
121 |
if __name__ == '__main__':
|
122 |
-
app.run(port=5003)
|
123 |
-
|
|
|
1 |
from flask import Flask, request, render_template, jsonify
|
2 |
import torch
|
3 |
from nltk.tokenize import word_tokenize
|
4 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, T5Tokenizer, T5ForConditionalGeneration, MBartForConditionalGeneration, MBart50TokenizerFast
|
5 |
from LDict import find_legal_terms, legal_terms_lower
|
6 |
import nltk
|
7 |
+
import re,os, logging
|
8 |
+
|
9 |
+
# Set environment variables for writable directories
|
10 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
|
11 |
+
nltk.data.path.append("/tmp/nltk_data")
|
12 |
+
|
13 |
logging.basicConfig(level=logging.ERROR)
|
14 |
|
15 |
+
# Download necessary NLTK data
|
16 |
+
nltk.download('punkt', download_dir="/tmp/nltk_data")
|
17 |
+
nltk.download('punkt_tab', download_dir="/tmp/nltk_data")
|
18 |
+
|
19 |
|
20 |
app = Flask(__name__)
|
21 |
|
|
|
60 |
inputs_legal = port_tokenizer(text, max_length=1024, truncation=True, return_tensors="pt")
|
61 |
summary_ids_legal = model_port.generate(inputs_legal["input_ids"], max_length=250, num_beams=4, early_stopping=True)
|
62 |
Summarized_method2 = port_tokenizer.decode(summary_ids_legal[0], skip_special_tokens=True)
|
|
|
63 |
cleaned_summary2 = remove_parentheses(Summarized_method2)
|
|
|
64 |
#Paraphrase
|
65 |
p_inputs = tokenizer_t5.encode(cleaned_summary2, return_tensors="pt", max_length=512, truncation=True)
|
66 |
p_summary_ids = model_t5.generate(p_inputs, max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)
|
67 |
method2 = tokenizer_t5.decode(p_summary_ids[0], skip_special_tokens=True)
|
|
|
68 |
return method2
|
69 |
|
70 |
elif method == "method1":
|
71 |
summarization_pipeline = pipeline('summarization', model=model_pegasus, tokenizer=tokenizer_pegasus, device=0 if device == "cuda" else -1)
|
72 |
method1 = summarization_pipeline(text, max_length=100, min_length=30, truncation=True)[0]['summary_text']
|
|
|
73 |
cleaned_summary1 = remove_parentheses(method1)
|
|
|
74 |
return cleaned_summary1
|
75 |
|
76 |
|
|
|
87 |
if request.method == 'POST':
|
88 |
try:
|
89 |
input_text = request.form['input_text']
|
|
|
90 |
method = request.form['method']
|
91 |
|
92 |
simplified_text = simplify_text(input_text)
|
|
|
93 |
summarized_text = summarize_text(simplified_text, method)
|
|
|
94 |
|
95 |
return jsonify({
|
96 |
+
"summarized_text": summarized_text, })
|
|
|
97 |
except Exception as e:
|
98 |
logging.error(f"Error occurred: {e}", exc_info=True)
|
99 |
return jsonify({"error": str(e)}), 500
|
|
|
103 |
def translate():
|
104 |
try:
|
105 |
data = request.get_json()
|
|
|
106 |
text = data['text']
|
107 |
translated_text = translate_to_hindi(text)
|
108 |
|
109 |
return jsonify({
|
110 |
+
"translated_text": translated_text})
|
|
|
111 |
except Exception as e:
|
112 |
logging.error(f"Error occurred during translation: {e}", exc_info=True)
|
113 |
return jsonify({"error": str(e)}), 500
|
114 |
|
115 |
|
116 |
if __name__ == '__main__':
|
117 |
+
app.run(port=5003)
|
|