Spaces:
Sleeping
Sleeping
File size: 7,792 Bytes
bca3a49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Vec3Array Class."""
from __future__ import annotations
import dataclasses
from typing import Union, List
import torch
Float = Union[float, torch.Tensor]
@dataclasses.dataclass(frozen=True)
class Vec3Array:
x: torch.Tensor = dataclasses.field(metadata={'dtype': torch.float32})
y: torch.Tensor
z: torch.Tensor
def __post_init__(self):
if hasattr(self.x, 'dtype'):
assert self.x.dtype == self.y.dtype
assert self.x.dtype == self.z.dtype
assert all([x == y for x, y in zip(self.x.shape, self.y.shape)])
assert all([x == z for x, z in zip(self.x.shape, self.z.shape)])
def __add__(self, other: Vec3Array) -> Vec3Array:
return Vec3Array(
self.x + other.x,
self.y + other.y,
self.z + other.z,
)
def __sub__(self, other: Vec3Array) -> Vec3Array:
return Vec3Array(
self.x - other.x,
self.y - other.y,
self.z - other.z,
)
def __mul__(self, other: Float) -> Vec3Array:
return Vec3Array(
self.x * other,
self.y * other,
self.z * other,
)
def __rmul__(self, other: Float) -> Vec3Array:
return self * other
def __truediv__(self, other: Float) -> Vec3Array:
return Vec3Array(
self.x / other,
self.y / other,
self.z / other,
)
def __neg__(self) -> Vec3Array:
return self * -1
def __pos__(self) -> Vec3Array:
return self * 1
def __getitem__(self, index) -> Vec3Array:
return Vec3Array(
self.x[index],
self.y[index],
self.z[index],
)
def __iter__(self):
return iter((self.x, self.y, self.z))
@property
def shape(self):
return self.x.shape
def map_tensor_fn(self, fn) -> Vec3Array:
return Vec3Array(
fn(self.x),
fn(self.y),
fn(self.z),
)
def cross(self, other: Vec3Array) -> Vec3Array:
"""Compute cross product between 'self' and 'other'."""
new_x = self.y * other.z - self.z * other.y
new_y = self.z * other.x - self.x * other.z
new_z = self.x * other.y - self.y * other.x
return Vec3Array(new_x, new_y, new_z)
def dot(self, other: Vec3Array) -> Float:
"""Compute dot product between 'self' and 'other'."""
return self.x * other.x + self.y * other.y + self.z * other.z
def norm(self, epsilon: float = 1e-6) -> Float:
"""Compute Norm of Vec3Array, clipped to epsilon."""
# To avoid NaN on the backward pass, we must use maximum before the sqrt
norm2 = self.dot(self)
if epsilon:
norm2 = torch.clamp(norm2, min=epsilon**2)
return torch.sqrt(norm2)
def norm2(self):
return self.dot(self)
def normalized(self, epsilon: float = 1e-6) -> Vec3Array:
"""Return unit vector with optional clipping."""
return self / self.norm(epsilon)
def clone(self) -> Vec3Array:
return Vec3Array(
self.x.clone(),
self.y.clone(),
self.z.clone(),
)
def reshape(self, new_shape) -> Vec3Array:
x = self.x.reshape(new_shape)
y = self.y.reshape(new_shape)
z = self.z.reshape(new_shape)
return Vec3Array(x, y, z)
def sum(self, dim: int) -> Vec3Array:
return Vec3Array(
torch.sum(self.x, dim=dim),
torch.sum(self.y, dim=dim),
torch.sum(self.z, dim=dim),
)
def unsqueeze(self, dim: int):
return Vec3Array(
self.x.unsqueeze(dim),
self.y.unsqueeze(dim),
self.z.unsqueeze(dim),
)
@classmethod
def zeros(cls, shape, device="cpu"):
"""Return Vec3Array corresponding to zeros of given shape."""
return cls(
torch.zeros(shape, dtype=torch.float32, device=device),
torch.zeros(shape, dtype=torch.float32, device=device),
torch.zeros(shape, dtype=torch.float32, device=device)
)
def to_tensor(self) -> torch.Tensor:
return torch.stack([self.x, self.y, self.z], dim=-1)
@classmethod
def from_array(cls, tensor):
return cls(*torch.unbind(tensor, dim=-1))
@classmethod
def cat(cls, vecs: List[Vec3Array], dim: int) -> Vec3Array:
return cls(
torch.cat([v.x for v in vecs], dim=dim),
torch.cat([v.y for v in vecs], dim=dim),
torch.cat([v.z for v in vecs], dim=dim),
)
def square_euclidean_distance(
vec1: Vec3Array,
vec2: Vec3Array,
epsilon: float = 1e-6
) -> Float:
"""Computes square of euclidean distance between 'vec1' and 'vec2'.
Args:
vec1: Vec3Array to compute distance to
vec2: Vec3Array to compute distance from, should be
broadcast compatible with 'vec1'
epsilon: distance is clipped from below to be at least epsilon
Returns:
Array of square euclidean distances;
shape will be result of broadcasting 'vec1' and 'vec2'
"""
difference = vec1 - vec2
distance = difference.dot(difference)
if epsilon:
distance = torch.clamp(distance, min=epsilon)
return distance
def dot(vector1: Vec3Array, vector2: Vec3Array) -> Float:
return vector1.dot(vector2)
def cross(vector1: Vec3Array, vector2: Vec3Array) -> Float:
return vector1.cross(vector2)
def norm(vector: Vec3Array, epsilon: float = 1e-6) -> Float:
return vector.norm(epsilon)
def normalized(vector: Vec3Array, epsilon: float = 1e-6) -> Vec3Array:
return vector.normalized(epsilon)
def euclidean_distance(
vec1: Vec3Array,
vec2: Vec3Array,
epsilon: float = 1e-6
) -> Float:
"""Computes euclidean distance between 'vec1' and 'vec2'.
Args:
vec1: Vec3Array to compute euclidean distance to
vec2: Vec3Array to compute euclidean distance from, should be
broadcast compatible with 'vec1'
epsilon: distance is clipped from below to be at least epsilon
Returns:
Array of euclidean distances;
shape will be result of broadcasting 'vec1' and 'vec2'
"""
distance_sq = square_euclidean_distance(vec1, vec2, epsilon**2)
distance = torch.sqrt(distance_sq)
return distance
def dihedral_angle(a: Vec3Array, b: Vec3Array, c: Vec3Array,
d: Vec3Array) -> Float:
"""Computes torsion angle for a quadruple of points.
For points (a, b, c, d), this is the angle between the planes defined by
points (a, b, c) and (b, c, d). It is also known as the dihedral angle.
Arguments:
a: A Vec3Array of coordinates.
b: A Vec3Array of coordinates.
c: A Vec3Array of coordinates.
d: A Vec3Array of coordinates.
Returns:
A tensor of angles in radians: [-pi, pi].
"""
v1 = a - b
v2 = b - c
v3 = d - c
c1 = v1.cross(v2)
c2 = v3.cross(v2)
c3 = c2.cross(c1)
v2_mag = v2.norm()
return torch.atan2(c3.dot(v2), v2_mag * c1.dot(c2))
|