# Step 2: Import necessary libraries import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM # Step 3: Load the model and tokenizer model_name = "unsloth/Llama-3.2-1B" try: # Attempt to load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) print(f"Successfully loaded model: {model_name}") except Exception as e: # Handle errors and notify the user print(f"Error loading model or tokenizer: {e}") tokenizer = None model = None # Step 4: Use a pipeline for text generation if model is loaded if model is not None and tokenizer is not None: text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) else: text_gen_pipeline = None # Step 5: Define the text generation function def generate_text(prompt, max_length=40, temperature=0.8, top_p=0.9, top_k=40, repetition_penalty=1.5, no_repeat_ngram_size=4): if text_gen_pipeline is None: return "Model not loaded. Please check the model name or try a different one." generated_text = text_gen_pipeline(prompt, max_length=max_length, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, num_return_sequences=1) return generated_text[0]['generated_text'] # Step 6: Set up the Gradio interface with gr.Blocks() as demo: gr.Markdown("## Text Generation with Llama 3.2 - 1B") gr.Markdown("For more details, check out this [Google Colab notebook](https://colab.research.google.com/drive/1TCyQNWMQzsjit_z3-0jHCQYfFTpawh8r#scrollTo=5-6MhJj0ZVpk).") prompt_input = gr.Textbox(label="Input (Prompt)", placeholder="Enter your prompt here...") max_length_input = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Maximum Length") temperature_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Temperature (creativity)") top_p_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)") top_k_input = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-k (sampling diversity)") repetition_penalty_input = gr.Slider(minimum=1.0, maximum=2.0, value=1.5, step=0.1, label="Repetition Penalty") no_repeat_ngram_size_input = gr.Slider(minimum=1, maximum=10, value=4, step=1, label="No Repeat N-Gram Size") output_text = gr.Textbox(label="Generated Text") generate_button = gr.Button("Generate") generate_button.click(generate_text, inputs=[prompt_input, max_length_input, temperature_input, top_p_input, top_k_input, repetition_penalty_input, no_repeat_ngram_size_input], outputs=output_text) # Step 7: Launch the app demo.launch()