import gradio as gr from diffusers import DiffusionPipeline def generate_image(modelsyu, prompt, negative_prompt): pipeline = DiffusionPipeline.from_pretrained(modelsyu) pipeline.to("cpu") # Attempt to generate an image with the negative prompt if supported try: image = pipeline(prompt, negative_prompt=negative_prompt).images[0] except TypeError: # Fallback if negative_prompt is not supported image = pipeline(prompt).images[0] return image # Define the Gradio interface with gr.Blocks() as demo: gr.Markdown("# Text to Image Generation Custom Models Demo") prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here") negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter your negative prompt here") submit_button = gr.Button("Generate Image") with gr.Accordion('Load your custom models first'): basem = gr.Textbox(label="Your Lora model", value="John6666/pony-diffusion-v6-xl-sdxl-spo") output_image = gr.Image(label="Generated Image") submit_button.click(generate_image, inputs=[basem, prompt, negative_prompt], outputs=output_image) # Launch the demo demo.launch()