t2i-custom / app.py
Hev832's picture
Update app.py
df527ec verified
import gradio as gr
from diffusers import DiffusionPipeline
def generate_image(modelsyu, prompt, negative_prompt):
pipeline = DiffusionPipeline.from_pretrained(modelsyu)
pipeline.to("cpu")
# Attempt to generate an image with the negative prompt if supported
try:
image = pipeline(prompt, negative_prompt=negative_prompt).images[0]
except TypeError:
# Fallback if negative_prompt is not supported
image = pipeline(prompt).images[0]
return image
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Text to Image Generation Custom Models Demo")
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter your negative prompt here")
submit_button = gr.Button("Generate Image")
with gr.Accordion('Load your custom models first'):
basem = gr.Textbox(label="Your Lora model", value="John6666/pony-diffusion-v6-xl-sdxl-spo")
output_image = gr.Image(label="Generated Image")
submit_button.click(generate_image, inputs=[basem, prompt, negative_prompt], outputs=output_image)
# Launch the demo
demo.launch()