GenAILearniverse commited on
Commit
36b0a0e
·
verified ·
1 Parent(s): 99aadcd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio as gr
3
+ import pandas as pd
4
+ import matplotlib.pyplot as plt
5
+
6
+ # Use a pipeline as a high-level helper
7
+ from transformers import pipeline
8
+ # model_path = ("../Models/models--distilbert--distilbert-base-uncased-finetuned-sst-2-english"
9
+ # "/snapshots/714eb0fa89d2f80546fda750413ed43d93601a13")
10
+
11
+ analyzer = pipeline("text-classification",
12
+ model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
13
+
14
+ # analyzer = pipeline("text-classification",
15
+ # model=model_path)
16
+
17
+
18
+
19
+ # print(analyzer(["This production is good", "This product was quite expensive"]))
20
+
21
+ def sentiment_analyzer(review):
22
+ sentiment = analyzer(review)
23
+ return sentiment[0]['label']
24
+
25
+ def sentiment_bar_chart(df):
26
+ sentiment_counts = df['Sentiment'].value_counts()
27
+
28
+ # Create a bar chart
29
+ fig, ax = plt.subplots()
30
+ sentiment_counts.plot(kind='pie', ax=ax, autopct='%1.1f%%', color=['green', 'red'])
31
+ ax.set_title('Review Sentiment Counts')
32
+ ax.set_xlabel('Sentiment')
33
+ ax.set_ylabel('Count')
34
+ # ax.set_xticklabels(['Positive', 'Negative'], rotation=0)
35
+
36
+ # Return the figure object
37
+ return fig
38
+
39
+
40
+ def read_reviews_and_analyze_sentiment(file_object):
41
+ # Load the Excel file into a DataFrame
42
+ df = pd.read_excel(file_object)
43
+
44
+ # Check if 'Review' column is in the DataFrame
45
+ if 'Reviews' not in df.columns:
46
+ raise ValueError("Excel file must contain a 'Review' column.")
47
+
48
+ # Apply the get_sentiment function to each review in the DataFrame
49
+ df['Sentiment'] = df['Reviews'].apply(sentiment_analyzer)
50
+ chart_object = sentiment_bar_chart(df)
51
+ return df, chart_object
52
+
53
+ # result = read_reviews_and_analyze_sentiment("../Files/Prod-review.xlsx")
54
+ # print(result)
55
+ # Example usage:
56
+ # df = read_reviews_and_analyze_sentiment('path_to_your_excel_file.xlsx')
57
+ # print(df)
58
+
59
+
60
+ demo = gr.Interface(fn=read_reviews_and_analyze_sentiment,
61
+ inputs=[gr.File(file_types=["xlsx"], label="Upload your review comment file")],
62
+ outputs=[gr.Dataframe(label="Sentiments"), gr.Plot(label="Sentiment Analysis")],
63
+ title="@GenAILearniverse Project 3: Sentiment Analyzer",
64
+ description="THIS APPLICATION WILL BE USED TO ANALYZE THE SENTIMENT BASED ON FILE UPLAODED.")
65
+ demo.launch()
66
+
67
+
68
+
69
+
70
+
71
+
72
+ # Example usage:
73
+ # Assuming you have a dataframe `df` with appropriate data
74
+ # fig = sentiment_bar_chart(df)
75
+ # fig.show() # This line is just to visualize the plot in a local environment