GenAILearniverse
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
|
6 |
+
# Use a pipeline as a high-level helper
|
7 |
+
from transformers import pipeline
|
8 |
+
# model_path = ("../Models/models--distilbert--distilbert-base-uncased-finetuned-sst-2-english"
|
9 |
+
# "/snapshots/714eb0fa89d2f80546fda750413ed43d93601a13")
|
10 |
+
|
11 |
+
analyzer = pipeline("text-classification",
|
12 |
+
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
13 |
+
|
14 |
+
# analyzer = pipeline("text-classification",
|
15 |
+
# model=model_path)
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
# print(analyzer(["This production is good", "This product was quite expensive"]))
|
20 |
+
|
21 |
+
def sentiment_analyzer(review):
|
22 |
+
sentiment = analyzer(review)
|
23 |
+
return sentiment[0]['label']
|
24 |
+
|
25 |
+
def sentiment_bar_chart(df):
|
26 |
+
sentiment_counts = df['Sentiment'].value_counts()
|
27 |
+
|
28 |
+
# Create a bar chart
|
29 |
+
fig, ax = plt.subplots()
|
30 |
+
sentiment_counts.plot(kind='pie', ax=ax, autopct='%1.1f%%', color=['green', 'red'])
|
31 |
+
ax.set_title('Review Sentiment Counts')
|
32 |
+
ax.set_xlabel('Sentiment')
|
33 |
+
ax.set_ylabel('Count')
|
34 |
+
# ax.set_xticklabels(['Positive', 'Negative'], rotation=0)
|
35 |
+
|
36 |
+
# Return the figure object
|
37 |
+
return fig
|
38 |
+
|
39 |
+
|
40 |
+
def read_reviews_and_analyze_sentiment(file_object):
|
41 |
+
# Load the Excel file into a DataFrame
|
42 |
+
df = pd.read_excel(file_object)
|
43 |
+
|
44 |
+
# Check if 'Review' column is in the DataFrame
|
45 |
+
if 'Reviews' not in df.columns:
|
46 |
+
raise ValueError("Excel file must contain a 'Review' column.")
|
47 |
+
|
48 |
+
# Apply the get_sentiment function to each review in the DataFrame
|
49 |
+
df['Sentiment'] = df['Reviews'].apply(sentiment_analyzer)
|
50 |
+
chart_object = sentiment_bar_chart(df)
|
51 |
+
return df, chart_object
|
52 |
+
|
53 |
+
# result = read_reviews_and_analyze_sentiment("../Files/Prod-review.xlsx")
|
54 |
+
# print(result)
|
55 |
+
# Example usage:
|
56 |
+
# df = read_reviews_and_analyze_sentiment('path_to_your_excel_file.xlsx')
|
57 |
+
# print(df)
|
58 |
+
|
59 |
+
|
60 |
+
demo = gr.Interface(fn=read_reviews_and_analyze_sentiment,
|
61 |
+
inputs=[gr.File(file_types=["xlsx"], label="Upload your review comment file")],
|
62 |
+
outputs=[gr.Dataframe(label="Sentiments"), gr.Plot(label="Sentiment Analysis")],
|
63 |
+
title="@GenAILearniverse Project 3: Sentiment Analyzer",
|
64 |
+
description="THIS APPLICATION WILL BE USED TO ANALYZE THE SENTIMENT BASED ON FILE UPLAODED.")
|
65 |
+
demo.launch()
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
# Example usage:
|
73 |
+
# Assuming you have a dataframe `df` with appropriate data
|
74 |
+
# fig = sentiment_bar_chart(df)
|
75 |
+
# fig.show() # This line is just to visualize the plot in a local environment
|