Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app_v4.py +85 -0
- requirements.txt +6 -0
app_v4.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import Levenshtein
|
4 |
+
import librosa
|
5 |
+
import torch
|
6 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
7 |
+
|
8 |
+
def load_model():
|
9 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-arabic"
|
10 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
11 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
12 |
+
return processor, model
|
13 |
+
|
14 |
+
processor, model = load_model()
|
15 |
+
|
16 |
+
def transcribe_audio_hf(audio_path):
|
17 |
+
"""
|
18 |
+
Transcribes speech from an audio file using a pretrained Wav2Vec2 model.
|
19 |
+
Args:
|
20 |
+
audio_path (str): Path to the audio file.
|
21 |
+
Returns:
|
22 |
+
str: The transcription of the speech in the audio file.
|
23 |
+
"""
|
24 |
+
speech_array, sampling_rate = librosa.load(audio_path, sr=16000)
|
25 |
+
input_values = processor(speech_array, sampling_rate=sampling_rate, return_tensors="pt", padding=True).input_values
|
26 |
+
with torch.no_grad():
|
27 |
+
logits = model(input_values).logits
|
28 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
29 |
+
transcription = processor.batch_decode(predicted_ids)[0].strip()
|
30 |
+
return transcription
|
31 |
+
|
32 |
+
def levenshtein_similarity(transcription1, transcription2):
|
33 |
+
"""
|
34 |
+
Calculate the Levenshtein similarity between two transcriptions.
|
35 |
+
Args:
|
36 |
+
transcription1 (str): The first transcription.
|
37 |
+
transcription2 (str): The second transcription.
|
38 |
+
Returns:
|
39 |
+
float: A normalized similarity score between 0 and 1, where 1 indicates identical transcriptions.
|
40 |
+
"""
|
41 |
+
distance = Levenshtein.distance(transcription1, transcription2)
|
42 |
+
max_len = max(len(transcription1), len(transcription2))
|
43 |
+
return 1 - distance / max_len # Normalize to get similarity score
|
44 |
+
|
45 |
+
def evaluate_audio_similarity(original_audio, user_audio):
|
46 |
+
"""
|
47 |
+
Compares the similarity between the transcription of an original audio file and a user's audio file.
|
48 |
+
Args:
|
49 |
+
original_audio (str): Path to the original audio file.
|
50 |
+
user_audio (str): Path to the user's audio file.
|
51 |
+
Returns:
|
52 |
+
tuple: Transcriptions and Levenshtein similarity score.
|
53 |
+
"""
|
54 |
+
transcription_original = transcribe_audio_hf(original_audio)
|
55 |
+
transcription_user = transcribe_audio_hf(user_audio)
|
56 |
+
similarity_score_levenshtein = levenshtein_similarity(transcription_original, transcription_user)
|
57 |
+
return transcription_original, transcription_user, similarity_score_levenshtein
|
58 |
+
|
59 |
+
def perform_testing(original_audio, user_audio):
|
60 |
+
if original_audio is not None and user_audio is not None:
|
61 |
+
transcription_original, transcription_user, similarity_score = evaluate_audio_similarity(original_audio, user_audio)
|
62 |
+
return (
|
63 |
+
f"**Original Transcription:** {transcription_original}",
|
64 |
+
f"**User Transcription:** {transcription_user}",
|
65 |
+
f"**Levenshtein Similarity Score:** {similarity_score:.2f}"
|
66 |
+
)
|
67 |
+
|
68 |
+
# Gradio Interface
|
69 |
+
with gr.Blocks() as app:
|
70 |
+
gr.Markdown("# Audio Transcription and Similarity Checker")
|
71 |
+
|
72 |
+
original_audio_upload = gr.Audio(label="Upload Original Audio", type="filepath")
|
73 |
+
user_audio_upload = gr.Audio(label="Upload User Audio", type="filepath")
|
74 |
+
upload_button = gr.Button("Perform Testing")
|
75 |
+
output_original_transcription = gr.Markdown()
|
76 |
+
output_user_transcription = gr.Markdown()
|
77 |
+
output_similarity_score = gr.Markdown()
|
78 |
+
|
79 |
+
upload_button.click(
|
80 |
+
perform_testing,
|
81 |
+
inputs=[original_audio_upload, user_audio_upload],
|
82 |
+
outputs=[output_original_transcription, output_user_transcription, output_similarity_score]
|
83 |
+
)
|
84 |
+
|
85 |
+
app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers[torch]
|
2 |
+
pydub
|
3 |
+
Levenshtein
|
4 |
+
av
|
5 |
+
librosa
|
6 |
+
gradio
|