### ----------------- ### # Standard library imports import os import re import sys import copy import warnings from typing import Optional # Third-party imports import numpy as np import torch import torch.distributed as dist import uvicorn import librosa import whisper import requests from fastapi import FastAPI from pydantic import BaseModel from decord import VideoReader, cpu from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import spaces # Local imports from egogpt.model.builder import load_pretrained_model from egogpt.mm_utils import get_model_name_from_path, process_images from egogpt.constants import ( IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, IGNORE_INDEX, SPEECH_TOKEN_INDEX, DEFAULT_SPEECH_TOKEN ) from egogpt.conversation import conv_templates, SeparatorStyle import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) from huggingface_hub import snapshot_download # 下载整个模型文件夹到本地 ./llava-onevision-qwen2-7b-ov # snapshot_download( # repo_id="lmms-lab/llava-onevision-qwen2-7b-ov", # local_dir="./llava-onevision-qwen2-7b-ov", # 指定本地存储目录 # ignore_patterns=["*.md", "*.txt"] # 可以忽略一些不必要的文件(可选) # ) from huggingface_hub import hf_hub_download # Download the model checkpoint file (large-v3.pt) ego_gpt_path = hf_hub_download( repo_id="EgoLife-v1/EgoGPT", filename="large-v3.pt", local_dir="./" ) # pretrained = "/mnt/sfs-common/jkyang/EgoGPT/checkpoints/EgoGPT-llavaov-7b-EgoIT-109k-release" # pretrained = "/mnt/sfs-common/jkyang/EgoGPT/checkpoints/EgoGPT-llavaov-7b-EgoIT-EgoLife-Demo" pretrained = 'EgoLife-v1/EgoGPT' device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device_map = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Add this initialization code before loading the model def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12377' # initialize the process group dist.init_process_group("gloo", rank=rank, world_size=world_size) setup(0,1) tokenizer, model, max_length = load_pretrained_model(pretrained,device_map=device_map) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device).eval() title_markdown = """
EgoLife

EgoLife

Towards Egocentric Life Assistant

Project Page | Github | Huggingface | Paper | Twitter (X)

EgoGPT

An Egocentric Video-Audio-Text Model
from EgoLife Project

""" notice_html = """
""" bibtext = """ ### Citation ``` @article{yang2025egolife, title={EgoLife\: Towards Egocentric Life Assistant}, author={The EgoLife Team}, journal={arXiv preprint arXiv:25xxx}, year={2025} } ``` """ # cur_dir = os.path.dirname(os.path.abspath(__file__)) cur_dir = '.' def time_to_frame_idx(time_int: int, fps: int) -> int: """ Convert time in HHMMSSFF format (integer or string) to frame index. :param time_int: Time in HHMMSSFF format, e.g., 10483000 (10:48:30.00) or "10483000". :param fps: Frames per second of the video. :return: Frame index corresponding to the given time. """ # Ensure time_int is a string for slicing time_str = str(time_int).zfill( 8) # Pad with zeros if necessary to ensure it's 8 digits hours = int(time_str[:2]) minutes = int(time_str[2:4]) seconds = int(time_str[4:6]) frames = int(time_str[6:8]) total_seconds = hours * 3600 + minutes * 60 + seconds total_frames = total_seconds * fps + frames # Convert to total frames return total_frames def split_text(text, keywords): # 创建一个正则表达式模式,将所有关键词用 | 连接,并使用捕获组 pattern = '(' + '|'.join(map(re.escape, keywords)) + ')' # 使用 re.split 保留分隔符 parts = re.split(pattern, text) # 去除空字符串 parts = [part for part in parts if part] return parts warnings.filterwarnings("ignore") # Create FastAPI instance app = FastAPI() def load_video( video_path: Optional[str] = None, max_frames_num: int = 16, fps: int = 1, video_start_time: Optional[float] = None, start_time: Optional[float] = None, end_time: Optional[float] = None, time_based_processing: bool = False ) -> tuple: vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) target_sr = 16000 # Add new time-based processing logic if time_based_processing: # Initialize video reader vr = decord.VideoReader(video_path, ctx=decord.cpu(0), num_threads=1) total_frame_num = len(vr) # Get the actual FPS of the video video_fps = vr.get_avg_fps() # Convert time to frame index based on the actual video FPS video_start_frame = int(time_to_frame_idx(video_start_time, video_fps)) start_frame = int(time_to_frame_idx(start_time, video_fps)) end_frame = int(time_to_frame_idx(end_time, video_fps)) print("start frame", start_frame) print("end frame", end_frame) # Ensure the end time does not exceed the total frame number if end_frame - start_frame > total_frame_num: end_frame = total_frame_num + start_frame # Adjust start_frame and end_frame based on video start time start_frame -= video_start_frame end_frame -= video_start_frame start_frame = max(0, int(round(start_frame))) # 确保不会小于0 end_frame = min(total_frame_num, int(round(end_frame))) # 确保不会超过总帧数 start_frame = int(round(start_frame)) end_frame = int(round(end_frame)) # Sample frames based on the provided fps (e.g., 1 frame per second) frame_idx = [i for i in range(start_frame, end_frame) if (i - start_frame) % int(video_fps / fps) == 0] # Get the video frames for the sampled indices video = vr.get_batch(frame_idx).asnumpy() target_sr = 16000 # Set target sample rate to 16kHz # Load audio from video with resampling y, _ = librosa.load(video_path, sr=target_sr) # Convert time to audio samples (using 16kHz sample rate) start_sample = int(start_time * target_sr) end_sample = int(end_time * target_sr) # Extract audio segment speech = y[start_sample:end_sample] else: # Original processing logic speech, _ = librosa.load(video_path, sr=target_sr) total_frame_num = len(vr) avg_fps = round(vr.get_avg_fps() / fps) frame_idx = [i for i in range(0, total_frame_num, avg_fps)] if max_frames_num > 0: if len(frame_idx) > max_frames_num: uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int) frame_idx = uniform_sampled_frames.tolist() video = vr.get_batch(frame_idx).asnumpy() # Process audio speech = whisper.pad_or_trim(speech.astype(np.float32)) speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0) speech_lengths = torch.LongTensor([speech.shape[0]]) return video, speech, speech_lengths class PromptRequest(BaseModel): prompt: str video_path: str = None max_frames_num: int = 16 fps: int = 1 video_start_time: float = None start_time: float = None end_time: float = None time_based_processing: bool = False # @spaces.GPU(duration=120) def generate_text(video_path, audio_track, prompt): max_frames_num = 30 fps = 1 # model.eval() # Video + speech branch conv_template = "qwen_1_5" # Make sure you use correct chat template for different models question = f"\n{prompt}" conv = copy.deepcopy(conv_templates[conv_template]) conv.append_message(conv.roles[0], question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() video, speech, speech_lengths = load_video( video_path=video_path, max_frames_num=max_frames_num, fps=fps, ) speech=torch.stack([speech]).to("cuda").half() processor = model.get_vision_tower().image_processor processed_video = processor.preprocess(video, return_tensors="pt")["pixel_values"] image = [(processed_video, video[0].size, "video")] print(prompt_question) parts=split_text(prompt_question,["",""]) input_ids=[] for part in parts: if ""==part: input_ids+=[IMAGE_TOKEN_INDEX] elif ""==part: input_ids+=[SPEECH_TOKEN_INDEX] else: input_ids+=tokenizer(part).input_ids input_ids = torch.tensor(input_ids,dtype=torch.long).unsqueeze(0).to(device) image_tensor = [image[0][0].half()] image_sizes = [image[0][1]] generate_kwargs={"eos_token_id":tokenizer.eos_token_id} print(input_ids) cont = model.generate( input_ids, images=image_tensor, image_sizes=image_sizes, speech=speech, speech_lengths=speech_lengths, do_sample=False, temperature=0.5, max_new_tokens=4096, modalities=["video"], **generate_kwargs ) text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True) return text_outputs[0] def extract_audio_from_video(video_path, audio_path=None): if audio_path: try: y, sr = librosa.load(audio_path, sr=8000, mono=True, res_type='kaiser_fast') return (sr, y) except Exception as e: print(f"Error loading audio from {audio_path}: {e}") return None if video_path is None: return None try: y, sr = librosa.load(video_path, sr=8000, mono=True, res_type='kaiser_fast') return (sr, y) except Exception as e: print(f"Error extracting audio from video: {e}") return None head = """ """ with gr.Blocks(head=head) as demo: gr.HTML(title_markdown) gr.HTML(notice_html) with gr.Row(): with gr.Column(): video_input = gr.Video(label="Video", autoplay=True, loop=True, format="mp4", width=600, height=400, show_label=False, elem_id='video') # Audio input synchronized with video playback audio_display = gr.Audio(label="Video Audio Track", autoplay=False, show_label=True, visible=True, interactive=False, elem_id="audio") text_input = gr.Textbox(label="Question", placeholder="Enter your message here...") with gr.Column(): # Create a separate column for output and examples output_text = gr.Textbox(label="Response", lines=14, max_lines=14) gr.Examples( examples=[ [f"{cur_dir}/bike.mp4", f"{cur_dir}/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."], [f"{cur_dir}/bike.mp4", f"{cur_dir}/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."], [f"{cur_dir}/bike.mp4", f"{cur_dir}/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."], [f"{cur_dir}/bike.mp4", f"{cur_dir}/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."] ], inputs=[video_input, audio_display, text_input], outputs=[output_text] ) # Add event handler for video changes video_input.change( fn=lambda video_path: extract_audio_from_video(video_path, audio_path=None), inputs=[video_input], outputs=[audio_display] ) # Add event handler for video clear/delete def clear_outputs(video): if video is None: # Video is cleared/deleted return "" return gr.skip() # Keep existing text if video exists video_input.change( fn=clear_outputs, inputs=[video_input], outputs=[output_text] ) # Add submit button and its event handler submit_btn = gr.Button("Submit") submit_btn.click( fn=generate_text, inputs=[video_input, audio_display, text_input], outputs=[output_text] ) gr.Markdown(bibtext) # Launch the Gradio app if __name__ == "__main__": demo.launch(share=True)