### ----------------- ###
# Standard library imports
import os
import re
import sys
import copy
import warnings
from typing import Optional
# Third-party imports
import numpy as np
import torch
import torch.distributed as dist
import uvicorn
import librosa
import whisper
import requests
from fastapi import FastAPI
from pydantic import BaseModel
from decord import VideoReader, cpu
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces
# Local imports
from egogpt.model.builder import load_pretrained_model
from egogpt.mm_utils import get_model_name_from_path, process_images
from egogpt.constants import (
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
IGNORE_INDEX,
SPEECH_TOKEN_INDEX,
DEFAULT_SPEECH_TOKEN
)
from egogpt.conversation import conv_templates, SeparatorStyle
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
from huggingface_hub import snapshot_download
# 下载整个模型文件夹到本地 ./llava-onevision-qwen2-7b-ov
# snapshot_download(
# repo_id="lmms-lab/llava-onevision-qwen2-7b-ov",
# local_dir="./llava-onevision-qwen2-7b-ov", # 指定本地存储目录
# ignore_patterns=["*.md", "*.txt"] # 可以忽略一些不必要的文件(可选)
# )
from huggingface_hub import hf_hub_download
# Download the model checkpoint file (large-v3.pt)
ego_gpt_path = hf_hub_download(
repo_id="EgoLife-v1/EgoGPT",
filename="large-v3.pt",
local_dir="./"
)
# pretrained = "/mnt/sfs-common/jkyang/EgoGPT/checkpoints/EgoGPT-llavaov-7b-EgoIT-109k-release"
# pretrained = "/mnt/sfs-common/jkyang/EgoGPT/checkpoints/EgoGPT-llavaov-7b-EgoIT-EgoLife-Demo"
pretrained = 'EgoLife-v1/EgoGPT'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device_map = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Add this initialization code before loading the model
def setup(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12377'
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
setup(0,1)
tokenizer, model, max_length = load_pretrained_model(pretrained,device_map=device_map)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device).eval()
title_markdown = """
EgoLife
Towards Egocentric Life Assistant
EgoGPT
An Egocentric Video-Audio-Text Model
from EgoLife Project
"""
notice_html = """
- - Due to hardware limitations on this demo page, we recommend users only try 10-second videos.
- - The demo model is used for the egocentric video captioning step for the EgoRAG framework. The recommended prompt includes:
- Can you help me log everything I do and the key things I see, like a personal journal? Describe them in a natural style.
- Please provide your response using the first person, with "I" as the subject. Make sure the descriptions are detailed and natural.
- Can you write down important things I notice or interact with? Please respond in the first person, using "I" as the subject. Describe them in a natural style.
"""
bibtext = """
### Citation
```
@article{yang2025egolife,
title={EgoLife\: Towards Egocentric Life Assistant},
author={The EgoLife Team},
journal={arXiv preprint arXiv:25xxx},
year={2025}
}
```
"""
# cur_dir = os.path.dirname(os.path.abspath(__file__))
cur_dir = '.'
def time_to_frame_idx(time_int: int, fps: int) -> int:
"""
Convert time in HHMMSSFF format (integer or string) to frame index.
:param time_int: Time in HHMMSSFF format, e.g., 10483000 (10:48:30.00) or "10483000".
:param fps: Frames per second of the video.
:return: Frame index corresponding to the given time.
"""
# Ensure time_int is a string for slicing
time_str = str(time_int).zfill(
8) # Pad with zeros if necessary to ensure it's 8 digits
hours = int(time_str[:2])
minutes = int(time_str[2:4])
seconds = int(time_str[4:6])
frames = int(time_str[6:8])
total_seconds = hours * 3600 + minutes * 60 + seconds
total_frames = total_seconds * fps + frames # Convert to total frames
return total_frames
def split_text(text, keywords):
# 创建一个正则表达式模式,将所有关键词用 | 连接,并使用捕获组
pattern = '(' + '|'.join(map(re.escape, keywords)) + ')'
# 使用 re.split 保留分隔符
parts = re.split(pattern, text)
# 去除空字符串
parts = [part for part in parts if part]
return parts
warnings.filterwarnings("ignore")
# Create FastAPI instance
app = FastAPI()
def load_video(
video_path: Optional[str] = None,
max_frames_num: int = 16,
fps: int = 1,
video_start_time: Optional[float] = None,
start_time: Optional[float] = None,
end_time: Optional[float] = None,
time_based_processing: bool = False
) -> tuple:
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
target_sr = 16000
# Add new time-based processing logic
if time_based_processing:
# Initialize video reader
vr = decord.VideoReader(video_path, ctx=decord.cpu(0), num_threads=1)
total_frame_num = len(vr)
# Get the actual FPS of the video
video_fps = vr.get_avg_fps()
# Convert time to frame index based on the actual video FPS
video_start_frame = int(time_to_frame_idx(video_start_time, video_fps))
start_frame = int(time_to_frame_idx(start_time, video_fps))
end_frame = int(time_to_frame_idx(end_time, video_fps))
print("start frame", start_frame)
print("end frame", end_frame)
# Ensure the end time does not exceed the total frame number
if end_frame - start_frame > total_frame_num:
end_frame = total_frame_num + start_frame
# Adjust start_frame and end_frame based on video start time
start_frame -= video_start_frame
end_frame -= video_start_frame
start_frame = max(0, int(round(start_frame))) # 确保不会小于0
end_frame = min(total_frame_num, int(round(end_frame))) # 确保不会超过总帧数
start_frame = int(round(start_frame))
end_frame = int(round(end_frame))
# Sample frames based on the provided fps (e.g., 1 frame per second)
frame_idx = [i for i in range(start_frame, end_frame) if (i - start_frame) % int(video_fps / fps) == 0]
# Get the video frames for the sampled indices
video = vr.get_batch(frame_idx).asnumpy()
target_sr = 16000 # Set target sample rate to 16kHz
# Load audio from video with resampling
y, _ = librosa.load(video_path, sr=target_sr)
# Convert time to audio samples (using 16kHz sample rate)
start_sample = int(start_time * target_sr)
end_sample = int(end_time * target_sr)
# Extract audio segment
speech = y[start_sample:end_sample]
else:
# Original processing logic
speech, _ = librosa.load(video_path, sr=target_sr)
total_frame_num = len(vr)
avg_fps = round(vr.get_avg_fps() / fps)
frame_idx = [i for i in range(0, total_frame_num, avg_fps)]
if max_frames_num > 0:
if len(frame_idx) > max_frames_num:
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, max_frames_num, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
video = vr.get_batch(frame_idx).asnumpy()
# Process audio
speech = whisper.pad_or_trim(speech.astype(np.float32))
speech = whisper.log_mel_spectrogram(speech, n_mels=128).permute(1, 0)
speech_lengths = torch.LongTensor([speech.shape[0]])
return video, speech, speech_lengths
class PromptRequest(BaseModel):
prompt: str
video_path: str = None
max_frames_num: int = 16
fps: int = 1
video_start_time: float = None
start_time: float = None
end_time: float = None
time_based_processing: bool = False
# @spaces.GPU(duration=120)
def generate_text(video_path, audio_track, prompt):
max_frames_num = 30
fps = 1
# model.eval()
# Video + speech branch
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
question = f"\n{prompt}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
video, speech, speech_lengths = load_video(
video_path=video_path,
max_frames_num=max_frames_num,
fps=fps,
)
speech=torch.stack([speech]).to("cuda").half()
processor = model.get_vision_tower().image_processor
processed_video = processor.preprocess(video, return_tensors="pt")["pixel_values"]
image = [(processed_video, video[0].size, "video")]
print(prompt_question)
parts=split_text(prompt_question,["",""])
input_ids=[]
for part in parts:
if ""==part:
input_ids+=[IMAGE_TOKEN_INDEX]
elif ""==part:
input_ids+=[SPEECH_TOKEN_INDEX]
else:
input_ids+=tokenizer(part).input_ids
input_ids = torch.tensor(input_ids,dtype=torch.long).unsqueeze(0).to(device)
image_tensor = [image[0][0].half()]
image_sizes = [image[0][1]]
generate_kwargs={"eos_token_id":tokenizer.eos_token_id}
print(input_ids)
cont = model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
speech=speech,
speech_lengths=speech_lengths,
do_sample=False,
temperature=0.5,
max_new_tokens=4096,
modalities=["video"],
**generate_kwargs
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
return text_outputs[0]
def extract_audio_from_video(video_path, audio_path=None):
if audio_path:
try:
y, sr = librosa.load(audio_path, sr=8000, mono=True, res_type='kaiser_fast')
return (sr, y)
except Exception as e:
print(f"Error loading audio from {audio_path}: {e}")
return None
if video_path is None:
return None
try:
y, sr = librosa.load(video_path, sr=8000, mono=True, res_type='kaiser_fast')
return (sr, y)
except Exception as e:
print(f"Error extracting audio from video: {e}")
return None
head = """
"""
with gr.Blocks(head=head) as demo:
gr.HTML(title_markdown)
gr.HTML(notice_html)
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Video", autoplay=True, loop=True, format="mp4", width=600, height=400, show_label=False, elem_id='video')
# Audio input synchronized with video playback
audio_display = gr.Audio(label="Video Audio Track", autoplay=False, show_label=True, visible=True, interactive=False, elem_id="audio")
text_input = gr.Textbox(label="Question", placeholder="Enter your message here...")
with gr.Column(): # Create a separate column for output and examples
output_text = gr.Textbox(label="Response", lines=14, max_lines=14)
gr.Examples(
examples=[
[f"{cur_dir}/bike.mp4", f"{cur_dir}/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."],
[f"{cur_dir}/bike.mp4", f"{cur_dir}/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."],
[f"{cur_dir}/bike.mp4", f"{cur_dir}/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."],
[f"{cur_dir}/bike.mp4", f"{cur_dir}/bike.mp3", "Can you tell me what I'm doing in short words. Describe them in a natural style."]
],
inputs=[video_input, audio_display, text_input],
outputs=[output_text]
)
# Add event handler for video changes
video_input.change(
fn=lambda video_path: extract_audio_from_video(video_path, audio_path=None),
inputs=[video_input],
outputs=[audio_display]
)
# Add event handler for video clear/delete
def clear_outputs(video):
if video is None: # Video is cleared/deleted
return ""
return gr.skip() # Keep existing text if video exists
video_input.change(
fn=clear_outputs,
inputs=[video_input],
outputs=[output_text]
)
# Add submit button and its event handler
submit_btn = gr.Button("Submit")
submit_btn.click(
fn=generate_text,
inputs=[video_input, audio_display, text_input],
outputs=[output_text]
)
gr.Markdown(bibtext)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch(share=True)