Spaces:
Sleeping
Sleeping
File size: 3,343 Bytes
4044613 bef6da5 6ddc6f5 bef6da5 eefed08 bef6da5 3c60848 d099673 3c60848 d475646 a3885b3 3c60848 bef6da5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import streamlit as st
# App Title and Introduction
st.title('Machine Learning Learning Hub')
st.write('Welcome to the ML Learning Hub, your gateway to learning Machine Learning!')
# Navigation and Layout
section = st.sidebar.selectbox('Choose a Section',
('Home', 'Beginner Resources', 'Intermediate Resources',
'Advanced Resources', 'Projects', 'Books', 'Communities'))
# Define Sections
# Home Section
if section == 'Home':
st.header('Welcome to the ML Learning Hub!')
st.write('Select a section from the sidebar to begin exploring resources.')
# Beginner Resources
elif section == 'Beginner Resources':
st.header('Beginner Resources')
st.write('Here are some great resources for ML beginners:')
st.markdown('[Machine Learning by Andrew Ng on Coursera](https://www.coursera.org/learn/machine-learning)')
st.markdown('[Introduction to Machine Learning for Coders by fast.ai](https://course.fast.ai/ml)')
st.markdown('[Google\'s Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course)')
# Intermediate Resources
elif section == 'Intermediate Resources':
st.header('Intermediate Resources')
st.write('Resources for those who are familiar with the basics:')
st.markdown('[Deep Learning Specialization by Andrew Ng on Coursera](https://www.coursera.org/specializations/deep-learning)')
st.markdown('[Kaggle Micro-Courses](https://www.kaggle.com/learn/overview)')
st.markdown('[DataCamp Machine Learning Scientist with Python Track](https://www.datacamp.com/tracks/machine-learning-scientist-with-python)')
# Advanced Resources
elif section == 'Advanced Resources':
st.header('Advanced Resources')
st.write('For those looking to deepen their ML knowledge:')
st.markdown('[Advanced Machine Learning Specialization on Coursera](https://www.coursera.org/specializations/aml)')
st.markdown('[MIT\'s Deep Learning for Self-Driving Cars](http://selfdrivingcars.mit.edu/)')
st.markdown('[The Elements of Statistical Learning: Data Mining, Inference, and Prediction](https://web.stanford.edu/~hastie/ElemStatLearn/)')
# Projects
elif section == 'Projects':
st.header('Projects')
st.write('Hands-on projects to apply your ML skills:')
st.markdown('[Kaggle Competitions](https://www.kaggle.com/competitions)')
st.markdown('[TensorFlow Projects](https://www.tensorflow.org/resources/learn-ml)')
st.markdown('[GitHub ML Showcase](https://github.com/collections/machine-learning)')
#Books
elif section == 'Books':
st.header('Books')
st.write('Useful Texts:')
st.markdown('[Deep Learning](https://udlbook.github.io/udlbook/)')
st.markdown('https://www.deeplearningbook.org/')
st.markdown('https://tensornetwork.org/')
# Communities
elif section == 'Communities':
st.header('Communities')
st.write('Join ML communities to learn and share:')
st.markdown('[r/MachineLearning on Reddit](https://www.reddit.com/r/MachineLearning/)')
st.markdown('[Data Science Stack Exchange](https://datascience.stackexchange.com/)')
st.markdown('[AI & Machine Learning on Stack Overflow](https://stackoverflow.com/tags/machine-learning)')
# Run the App
# To run the app, save this script and use the command: streamlit run [script_name].py
|