import gradio as gr from fastai.vision.all import * from PIL import Image as pilIm # #learn = load_learner('export.pkl') #learn = torch.load('digit_classifier.pth') #learn.eval() #switch to eval mode model_dict=torch.load('my_model.pt') W1,B1,W2,B2,W3,B3=model_dict['W1'],model_dict['B1'],model_dict['W2'],model_dict['B2'],model_dict['W3'],model_dict['B3'] def mdlV2(xb): res = xb@W1+B1 res = res.max(tensor(0.)) res = res@W2+B2 # returns 10 features for each input res = res.max(tensor(0.)) res = res@W3+B3 # returns 10 features for each input return res labels = [str(x) for x in range(10)] # ################################# # #Define class for importing Model # class DigitClassifier(torch.nn.Module): # def __init__(self): # super().__init__() # self.fc1 = torch.nn.Linear(64, 32) # self.fc2 = torch.nn.Linear(32, 16) # self.fc3 = torch.nn.Linear(16, 10) # def forward(self, x): # x = x.view(-1, 64) # x = torch.relu(self.fc1(x)) # x = torch.relu(self.fc2(x)) # x = self.fc3(x) # return x ######################################### #Define function to reduce image of arbitrary size to 8x8 per model requirements. def reduce_image_count(image): output_size = (8, 8) block_size = (image.shape[0] // output_size[0], image.shape[1] // output_size[1]) output = np.zeros(output_size) for i in range(output_size[0]): for j in range(output_size[1]): block = image[i*block_size[0]:(i+1)*block_size[0], j*block_size[1]:(j+1)*block_size[1]] count = np.count_nonzero(block) output[i, j] = count normalizer=np.amax(output) output=output*16/normalizer return output ######################################### def predict(img): #First take input and reduce it to 8x8 px as the dataset was pil_image = pilIm.open(img) #get image gray_img = pil_image.convert('L')#grayscale pic = np.array(gray_img) #convert to array inp_img=reduce_image_count(pic)#Reduce image to required input size z=Tensor(inp_img) y=z.view(-1,64) x=mdlV2(y) w=F.softmax(x,dim=-1) v=w[0] u=v.data otpt=u #pred,pred_idx,probs = learn.predict(img) return dict([[labels[i], float(otpt[i])] for i in range(len(labels))]),inp_img/16 gr.Interface(fn=predict, inputs=gr.inputs.Image(type='filepath'), outputs=[gr.outputs.Label(num_top_classes=10), gr.outputs.Image()]).launch()