File size: 2,097 Bytes
51f615c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31fed9d
51f615c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model and tokenizer
@st.cache_resource
def load_model():
    model_name = "replit/replit-code-v1-3b"  # Replace with your fine-tuned model if applicable
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
    return model, tokenizer

model, tokenizer = load_model()

# App title and description
st.title("Replit-code-v1-3b Code Assistant 📊")
st.markdown("""
This application allows you to interact with the **Replit-code-v1-3b** large language model.  
You can use it to generate, debug, or optimize code snippets.  
Simply provide a prompt, and the model will respond with suggestions!
""")

# User input
st.header("Enter Your Prompt")
prompt = st.text_area("Describe your coding task or paste your code for debugging:")

# Temperature and max length controls
st.sidebar.header("Model Settings")
temperature = st.sidebar.slider("Temperature (Creativity)", 0.0, 1.0, 0.7)
max_length = st.sidebar.slider("Max Response Length", 50, 500, 200)

# Submit button
if st.button("Generate Response"):
    if prompt.strip():
        with st.spinner("Generating response..."):
            # Tokenize and generate response
            inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
            outputs = model.generate(
                inputs.input_ids, 
                max_length=max_length, 
                temperature=temperature, 
                pad_token_id=tokenizer.eos_token_id
            )
            response = tokenizer.decode(outputs[0], skip_special_tokens=True)

        # Display response
        st.subheader("Generated Code/Response")
        st.code(response, language="python")
    else:
        st.warning("Please enter a prompt to generate a response.")

# Footer
st.markdown("---")
st.markdown("""
**Replit-code-v1-3b Code Assistant**  
Built with [Streamlit](https://streamlit.io/) and the [Hugging Face Transformers Library](https://huggingface.co/docs/transformers).
""")