import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer from transformers import AutoModel, AutoTokenizer from transformers.adapters import AutoAdapterModel from transformers import AutoTokenizer model_name = "unsloth/Meta-Llama-3.1-8B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) # Load the base model with adapters model = AutoAdapterModel.from_pretrained(model_name) model.load_adapter("Braszczynski/Llama-3.2-3B-Instruct-bnb-4bit-460steps") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Combine system message and chat history chat_history = f"{system_message}\n" for user_msg, bot_reply in history: chat_history += f"User: {user_msg}\nAssistant: {bot_reply}\n" chat_history += f"User: {message}\nAssistant:" # Tokenize the input inputs = tokenizer(chat_history, return_tensors="pt", truncation=True).to("cuda") # Generate response outputs = model.generate( inputs["input_ids"], max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id ) # Decode and format the output response = tokenizer.decode(outputs[0], skip_special_tokens=True) response = response[len(chat_history):].strip() # Remove input context from output return response # Define the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()