Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -15,50 +18,39 @@ def respond(
|
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
-
|
19 |
-
|
20 |
-
for
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the model and tokenizer
|
5 |
+
model_name = "Braszczynski/Llama-3.2-3B-Instruct-bnb-4bit-460steps"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(
|
8 |
+
model_name,
|
9 |
+
load_in_4bit=True, # Ensure this matches your model's quantization
|
10 |
+
device_map="auto" # Automatically allocate model layers to GPUs
|
11 |
+
)
|
12 |
|
13 |
def respond(
|
14 |
message,
|
|
|
18 |
temperature,
|
19 |
top_p,
|
20 |
):
|
21 |
+
# Combine system message and chat history
|
22 |
+
chat_history = f"{system_message}\n"
|
23 |
+
for user_msg, bot_reply in history:
|
24 |
+
chat_history += f"User: {user_msg}\nAssistant: {bot_reply}\n"
|
25 |
+
chat_history += f"User: {message}\nAssistant:"
|
26 |
+
|
27 |
+
# Tokenize the input
|
28 |
+
inputs = tokenizer(chat_history, return_tensors="pt", truncation=True).to("cuda")
|
29 |
+
|
30 |
+
# Generate response
|
31 |
+
outputs = model.generate(
|
32 |
+
inputs["input_ids"],
|
33 |
+
max_new_tokens=max_tokens,
|
|
|
|
|
|
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
+
pad_token_id=tokenizer.eos_token_id
|
37 |
+
)
|
38 |
|
39 |
+
# Decode and format the output
|
40 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
+
response = response[len(chat_history):].strip() # Remove input context from output
|
42 |
+
return response
|
43 |
|
44 |
+
# Define the Gradio interface
|
|
|
|
|
|
|
45 |
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
48 |
+
gr.Textbox(value="You are a friendly assistant.", label="System message"),
|
49 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
],
|
53 |
)
|
54 |
|
|
|
55 |
if __name__ == "__main__":
|
56 |
demo.launch()
|