Braszczynski commited on
Commit
b42ac71
·
verified ·
1 Parent(s): bf645f6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -40
app.py CHANGED
@@ -1,11 +1,14 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient(model = "Braszczynski/Llama-3.2-3B-Instruct-bnb-4bit-460steps")
8
-
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,50 +18,39 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+
4
+ # Load the model and tokenizer
5
+ model_name = "Braszczynski/Llama-3.2-3B-Instruct-bnb-4bit-460steps"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
7
+ model = AutoModelForCausalLM.from_pretrained(
8
+ model_name,
9
+ load_in_4bit=True, # Ensure this matches your model's quantization
10
+ device_map="auto" # Automatically allocate model layers to GPUs
11
+ )
12
 
13
  def respond(
14
  message,
 
18
  temperature,
19
  top_p,
20
  ):
21
+ # Combine system message and chat history
22
+ chat_history = f"{system_message}\n"
23
+ for user_msg, bot_reply in history:
24
+ chat_history += f"User: {user_msg}\nAssistant: {bot_reply}\n"
25
+ chat_history += f"User: {message}\nAssistant:"
26
+
27
+ # Tokenize the input
28
+ inputs = tokenizer(chat_history, return_tensors="pt", truncation=True).to("cuda")
29
+
30
+ # Generate response
31
+ outputs = model.generate(
32
+ inputs["input_ids"],
33
+ max_new_tokens=max_tokens,
 
 
 
34
  temperature=temperature,
35
  top_p=top_p,
36
+ pad_token_id=tokenizer.eos_token_id
37
+ )
38
 
39
+ # Decode and format the output
40
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
41
+ response = response[len(chat_history):].strip() # Remove input context from output
42
+ return response
43
 
44
+ # Define the Gradio interface
 
 
 
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
+ gr.Textbox(value="You are a friendly assistant.", label="System message"),
49
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
52
  ],
53
  )
54
 
 
55
  if __name__ == "__main__":
56
  demo.launch()