Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,10 @@ import pickle
|
|
5 |
from pathlib import Path
|
6 |
import time
|
7 |
|
8 |
-
print("load model start
|
9 |
print(time.time())
|
10 |
model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')
|
11 |
-
print("load model end
|
12 |
print(time.time())
|
13 |
|
14 |
def make_clickable_both(val):
|
@@ -30,7 +30,7 @@ def find(query):
|
|
30 |
]
|
31 |
|
32 |
quran = pd.read_csv('quran-eng.csv', delimiter=",")
|
33 |
-
print("load quran eng
|
34 |
print(time.time())
|
35 |
|
36 |
#file = open('quran-splitted.sav','rb')
|
@@ -44,22 +44,24 @@ def find(query):
|
|
44 |
# pickle.dump(embeddings, open(filename, 'wb'))
|
45 |
file = open('encoded_quran_text_split_multilingual-e5-large-instructs.sav','rb')
|
46 |
document_embeddings = pickle.load(file)
|
47 |
-
print("load quran embedding
|
48 |
print(time.time())
|
49 |
|
50 |
query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
|
|
|
|
|
51 |
scores = (query_embeddings @ document_embeddings.T) * 100
|
52 |
-
print("count similarities
|
53 |
print(time.time())
|
54 |
|
55 |
# insert the similarity value to dataframe & sort it
|
56 |
file = open('quran-splitted.sav','rb')
|
57 |
quran_splitted = pickle.load(file)
|
58 |
-
print("load quran
|
59 |
print(time.time())
|
60 |
quran_splitted['similarity'] = scores.tolist()[0]
|
61 |
sorted_quran = quran_splitted.sort_values(by='similarity', ascending=False)
|
62 |
-
print("sort by similarity
|
63 |
print(time.time())
|
64 |
|
65 |
#results = ""
|
@@ -71,7 +73,7 @@ def find(query):
|
|
71 |
results = pd.concat([results, result_quran])
|
72 |
#results = results + result_quran['text'].item()+" (Q.S "+str(result['sura']).rstrip('.0')+":"+str(result['aya']).rstrip('.0')+")\n"
|
73 |
i=i+1
|
74 |
-
print("collect results
|
75 |
print(time.time())
|
76 |
|
77 |
url = 'https://quran.com/'+results['sura'].astype(str)+':'+results['aya'].astype(str)+'/tafsirs/en-tafisr-ibn-kathir'
|
|
|
5 |
from pathlib import Path
|
6 |
import time
|
7 |
|
8 |
+
print("load model start")
|
9 |
print(time.time())
|
10 |
model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')
|
11 |
+
print("load model end")
|
12 |
print(time.time())
|
13 |
|
14 |
def make_clickable_both(val):
|
|
|
30 |
]
|
31 |
|
32 |
quran = pd.read_csv('quran-eng.csv', delimiter=",")
|
33 |
+
print("load quran eng")
|
34 |
print(time.time())
|
35 |
|
36 |
#file = open('quran-splitted.sav','rb')
|
|
|
44 |
# pickle.dump(embeddings, open(filename, 'wb'))
|
45 |
file = open('encoded_quran_text_split_multilingual-e5-large-instructs.sav','rb')
|
46 |
document_embeddings = pickle.load(file)
|
47 |
+
print("load quran embedding")
|
48 |
print(time.time())
|
49 |
|
50 |
query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
|
51 |
+
print("embed query")
|
52 |
+
print(time.time())
|
53 |
scores = (query_embeddings @ document_embeddings.T) * 100
|
54 |
+
print("count similarities")
|
55 |
print(time.time())
|
56 |
|
57 |
# insert the similarity value to dataframe & sort it
|
58 |
file = open('quran-splitted.sav','rb')
|
59 |
quran_splitted = pickle.load(file)
|
60 |
+
print("load quran")
|
61 |
print(time.time())
|
62 |
quran_splitted['similarity'] = scores.tolist()[0]
|
63 |
sorted_quran = quran_splitted.sort_values(by='similarity', ascending=False)
|
64 |
+
print("sort by similarity")
|
65 |
print(time.time())
|
66 |
|
67 |
#results = ""
|
|
|
73 |
results = pd.concat([results, result_quran])
|
74 |
#results = results + result_quran['text'].item()+" (Q.S "+str(result['sura']).rstrip('.0')+":"+str(result['aya']).rstrip('.0')+")\n"
|
75 |
i=i+1
|
76 |
+
print("collect results")
|
77 |
print(time.time())
|
78 |
|
79 |
url = 'https://quran.com/'+results['sura'].astype(str)+':'+results['aya'].astype(str)+'/tafsirs/en-tafisr-ibn-kathir'
|