Bofandra commited on
Commit
4525d51
·
verified ·
1 Parent(s): e9c92d6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -8
app.py CHANGED
@@ -5,10 +5,10 @@ import pickle
5
  from pathlib import Path
6
  import time
7
 
8
- print("load model start\n")
9
  print(time.time())
10
  model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')
11
- print("load model end\n")
12
  print(time.time())
13
 
14
  def make_clickable_both(val):
@@ -30,7 +30,7 @@ def find(query):
30
  ]
31
 
32
  quran = pd.read_csv('quran-eng.csv', delimiter=",")
33
- print("load quran eng\n")
34
  print(time.time())
35
 
36
  #file = open('quran-splitted.sav','rb')
@@ -44,22 +44,24 @@ def find(query):
44
  # pickle.dump(embeddings, open(filename, 'wb'))
45
  file = open('encoded_quran_text_split_multilingual-e5-large-instructs.sav','rb')
46
  document_embeddings = pickle.load(file)
47
- print("load quran embedding\n")
48
  print(time.time())
49
 
50
  query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
 
 
51
  scores = (query_embeddings @ document_embeddings.T) * 100
52
- print("count similarities\n")
53
  print(time.time())
54
 
55
  # insert the similarity value to dataframe & sort it
56
  file = open('quran-splitted.sav','rb')
57
  quran_splitted = pickle.load(file)
58
- print("load quran\n")
59
  print(time.time())
60
  quran_splitted['similarity'] = scores.tolist()[0]
61
  sorted_quran = quran_splitted.sort_values(by='similarity', ascending=False)
62
- print("sort by similarity\n")
63
  print(time.time())
64
 
65
  #results = ""
@@ -71,7 +73,7 @@ def find(query):
71
  results = pd.concat([results, result_quran])
72
  #results = results + result_quran['text'].item()+" (Q.S "+str(result['sura']).rstrip('.0')+":"+str(result['aya']).rstrip('.0')+")\n"
73
  i=i+1
74
- print("collect results\n")
75
  print(time.time())
76
 
77
  url = 'https://quran.com/'+results['sura'].astype(str)+':'+results['aya'].astype(str)+'/tafsirs/en-tafisr-ibn-kathir'
 
5
  from pathlib import Path
6
  import time
7
 
8
+ print("load model start")
9
  print(time.time())
10
  model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')
11
+ print("load model end")
12
  print(time.time())
13
 
14
  def make_clickable_both(val):
 
30
  ]
31
 
32
  quran = pd.read_csv('quran-eng.csv', delimiter=",")
33
+ print("load quran eng")
34
  print(time.time())
35
 
36
  #file = open('quran-splitted.sav','rb')
 
44
  # pickle.dump(embeddings, open(filename, 'wb'))
45
  file = open('encoded_quran_text_split_multilingual-e5-large-instructs.sav','rb')
46
  document_embeddings = pickle.load(file)
47
+ print("load quran embedding")
48
  print(time.time())
49
 
50
  query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
51
+ print("embed query")
52
+ print(time.time())
53
  scores = (query_embeddings @ document_embeddings.T) * 100
54
+ print("count similarities")
55
  print(time.time())
56
 
57
  # insert the similarity value to dataframe & sort it
58
  file = open('quran-splitted.sav','rb')
59
  quran_splitted = pickle.load(file)
60
+ print("load quran")
61
  print(time.time())
62
  quran_splitted['similarity'] = scores.tolist()[0]
63
  sorted_quran = quran_splitted.sort_values(by='similarity', ascending=False)
64
+ print("sort by similarity")
65
  print(time.time())
66
 
67
  #results = ""
 
73
  results = pd.concat([results, result_quran])
74
  #results = results + result_quran['text'].item()+" (Q.S "+str(result['sura']).rstrip('.0')+":"+str(result['aya']).rstrip('.0')+")\n"
75
  i=i+1
76
+ print("collect results")
77
  print(time.time())
78
 
79
  url = 'https://quran.com/'+results['sura'].astype(str)+':'+results['aya'].astype(str)+'/tafsirs/en-tafisr-ibn-kathir'