import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM config = PeftConfig.from_pretrained("AliEssa555/latest-podcast-model-ft") base_model = AutoModelForCausalLM.from_pretrained("TheBloke/Mistral-7B-Instruct-v0.2-GPTQ") model = PeftModel.from_pretrained(base_model, "AliEssa555/latest-podcast-model-ft") #model_name = "path_to_your_fine_tuned_model" # Use the local path or the Hugging Face model hub ID if published #model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(model) if torch.cuda.is_available(): model = model.to("cuda") # Generate a response based on user input def generate_response(user_input): # Format the input as an instructional prompt prompt = f"[INST] User: {user_input} [/INST] Assistant:" # Tokenize input and generate response inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") output_tokens = model.generate(inputs["input_ids"], max_length=512, temperature=0.7, top_p=0.9, do_sample=True) # Decode and format the output response = tokenizer.decode(output_tokens[0], skip_special_tokens=True) return response.split("Assistant:")[-1].strip() # Remove "Assistant:" tag if present # Define Gradio interface with gr.Blocks() as demo: gr.Markdown("## LLM Podcast Response Generator") with gr.Row(): user_input = gr.Textbox(label="Enter your question related to the podcast:", placeholder="Type your question here...") with gr.Row(): response_output = gr.Textbox(label="Model's Response") submit_button = gr.Button("Generate Response") # Connect button to the function submit_button.click(fn=generate_response, inputs=user_input, outputs=response_output) # Launch the Gradio app demo.launch()