Spaces:
Sleeping
Sleeping
akhilgautam
commited on
Add files via upload
Browse filesadded code from hugging face to github
- Dockerfile +25 -0
- README.md +10 -0
- app.py +15 -0
- main.py +61 -0
- model_utils.py +42 -0
- requirements.txt +11 -0
Dockerfile
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
# Install system dependencies
|
4 |
+
RUN apt-get update && apt-get install -y \
|
5 |
+
build-essential \
|
6 |
+
software-properties-common \
|
7 |
+
&& rm -rf /var/lib/apt/lists/*
|
8 |
+
|
9 |
+
# Set the working directory
|
10 |
+
WORKDIR /code
|
11 |
+
|
12 |
+
RUN mkdir /.cache && chmod 777 /.cache
|
13 |
+
|
14 |
+
# Copy the requirements file
|
15 |
+
COPY ./requirements.txt /code/requirements.txt
|
16 |
+
COPY ./weights-roberta-base.h5 /code/weights-roberta-base.h5
|
17 |
+
|
18 |
+
# Install Python dependencies
|
19 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
20 |
+
|
21 |
+
# Copy the application code
|
22 |
+
COPY . /code/
|
23 |
+
|
24 |
+
# Set the command to run the FastAPI application
|
25 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Personality Assesment
|
3 |
+
emoji: 🏢
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
---
|
9 |
+
|
10 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from model_utils import predict_personality
|
3 |
+
|
4 |
+
# Create Gradio interface
|
5 |
+
iface = gr.Interface(
|
6 |
+
fn=predict_personality,
|
7 |
+
inputs=gr.Textbox(lines=5, label="Enter text for personality prediction"),
|
8 |
+
outputs=gr.Label(num_top_classes=5, label="Personality Traits"),
|
9 |
+
title="Personality Prediction with RoBERTa",
|
10 |
+
description="Enter some text to predict personality traits using a fine-tuned RoBERTa model."
|
11 |
+
)
|
12 |
+
|
13 |
+
# Launch the interface
|
14 |
+
if __name__ == "__main__":
|
15 |
+
iface.launch()
|
main.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# API/main.py
|
2 |
+
|
3 |
+
# main.py (in the root directory)
|
4 |
+
|
5 |
+
import sys
|
6 |
+
import os
|
7 |
+
from model_utils import predict_personality
|
8 |
+
from fastapi import FastAPI
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
@app.get("/")
|
13 |
+
async def root():
|
14 |
+
return {"message": "Personality Assessment API is running"}
|
15 |
+
|
16 |
+
@app.get("/predict")
|
17 |
+
async def predict_personality_get(text: str):
|
18 |
+
try:
|
19 |
+
predictions = predict_personality(text)
|
20 |
+
return {"predictions": predictions}
|
21 |
+
except NameError:
|
22 |
+
return {"error": "predict_personality function not available"}
|
23 |
+
|
24 |
+
|
25 |
+
if __name__ == "__main__":
|
26 |
+
import uvicorn
|
27 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
""" from fastapi import FastAPI, Request
|
33 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
34 |
+
import torch
|
35 |
+
|
36 |
+
app = FastAPI()
|
37 |
+
|
38 |
+
# Load the model and tokenizer
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("Minej/bert-base-personality")
|
40 |
+
model = AutoModelForSequenceClassification.from_pretrained("Minej/bert-base-personality")
|
41 |
+
|
42 |
+
# Define the personality trait labels
|
43 |
+
labels = ["Extroversion", "Neuroticism", "Agreeableness", "Conscientiousness", "Openness"]
|
44 |
+
|
45 |
+
# Function to predict personality traits
|
46 |
+
def predict_personality(text):
|
47 |
+
inputs = tokenizer(text, return_tensors="pt")
|
48 |
+
outputs = model(**inputs)[0]
|
49 |
+
probabilities = torch.softmax(outputs, dim=1)
|
50 |
+
predictions = [{"trait": label, "score": float(prob)} for label, prob in zip(labels, probabilities[0])]
|
51 |
+
return predictions
|
52 |
+
|
53 |
+
# Root path handler
|
54 |
+
@app.get("/")
|
55 |
+
async def root():
|
56 |
+
return {"message": "Personality Assessment API is running"}
|
57 |
+
|
58 |
+
@app.get("/predict")
|
59 |
+
async def predict_personality_get(text: str):
|
60 |
+
predictions = predict_personality(text)
|
61 |
+
return {"predictions": predictions} """
|
model_utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model_utils.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import tensorflow as tf
|
5 |
+
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
|
6 |
+
|
7 |
+
# Define the personality trait labels
|
8 |
+
traits = ['cAGR', 'cCON', 'cEXT', 'cOPN', 'cNEU']
|
9 |
+
|
10 |
+
def load_model_and_weights():
|
11 |
+
model_name = "roberta-base"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model = TFAutoModelForSequenceClassification.from_pretrained(
|
14 |
+
model_name,
|
15 |
+
num_labels=len(traits),
|
16 |
+
problem_type="multi_label_classification"
|
17 |
+
)
|
18 |
+
|
19 |
+
# Load custom weights
|
20 |
+
weights_path = os.path.join(os.getcwd(), 'weights-roberta-base.h5')
|
21 |
+
if os.path.exists(weights_path):
|
22 |
+
try:
|
23 |
+
model.load_weights(weights_path)
|
24 |
+
print("Custom weights loaded successfully.")
|
25 |
+
except Exception as e:
|
26 |
+
print(f"Error loading weights: {str(e)}")
|
27 |
+
print("Using default weights.")
|
28 |
+
else:
|
29 |
+
print(f"Warning: Custom weights file not found at {weights_path}")
|
30 |
+
print("Using default weights.")
|
31 |
+
|
32 |
+
return tokenizer, model
|
33 |
+
|
34 |
+
# Load the model and tokenizer
|
35 |
+
tokenizer, model = load_model_and_weights()
|
36 |
+
|
37 |
+
def predict_personality(text):
|
38 |
+
inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True, max_length=512)
|
39 |
+
outputs = model(inputs)
|
40 |
+
probabilities = tf.nn.sigmoid(outputs.logits)[0] # Using sigmoid for multi-label
|
41 |
+
predictions = [{"trait": trait, "score": float(prob)} for trait, prob in zip(traits, probabilities)]
|
42 |
+
return predictions
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi==0.92.0
|
2 |
+
uvicorn==0.20.0
|
3 |
+
transformers==4.27.4
|
4 |
+
torch==1.13.1
|
5 |
+
gradio==3.23.0
|
6 |
+
numpy==1.21.0
|
7 |
+
pandas==1.3.0
|
8 |
+
scikit-learn==0.24.2
|
9 |
+
wget
|
10 |
+
requests
|
11 |
+
tensorflow
|