Muhammad Anas Akhtar
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,67 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
# Use a pipeline as a high-level helper
|
5 |
from transformers import pipeline
|
6 |
|
7 |
-
|
8 |
question_answer = pipeline("question-answering",
|
9 |
-
|
10 |
-
|
11 |
-
# question_answer = pipeline("question-answering",
|
12 |
-
# model=model_path)
|
13 |
|
14 |
def read_file_content(file_obj):
|
15 |
"""
|
16 |
Reads the content of a file object and returns it.
|
|
|
|
|
17 |
Parameters:
|
18 |
file_obj (file object): The file object to read from.
|
19 |
Returns:
|
20 |
str: The content of the file.
|
21 |
"""
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def get_answer(file, question):
|
|
|
|
|
|
|
|
|
|
|
32 |
context = read_file_content(file)
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
|
|
|
|
3 |
from transformers import pipeline
|
4 |
|
5 |
+
# Use a pipeline as a high-level helper
|
6 |
question_answer = pipeline("question-answering",
|
7 |
+
model="deepset/roberta-base-squad2")
|
|
|
|
|
|
|
8 |
|
9 |
def read_file_content(file_obj):
|
10 |
"""
|
11 |
Reads the content of a file object and returns it.
|
12 |
+
Attempts multiple encodings if the default fails.
|
13 |
+
|
14 |
Parameters:
|
15 |
file_obj (file object): The file object to read from.
|
16 |
Returns:
|
17 |
str: The content of the file.
|
18 |
"""
|
19 |
+
encodings = ['utf-8', 'latin-1', 'cp1252', 'ascii']
|
20 |
+
|
21 |
+
for encoding in encodings:
|
22 |
+
try:
|
23 |
+
with open(file_obj.name, 'r', encoding=encoding) as file:
|
24 |
+
context = file.read()
|
25 |
+
return context
|
26 |
+
except UnicodeDecodeError:
|
27 |
+
continue
|
28 |
+
except Exception as e:
|
29 |
+
return f"An error occurred: {e}"
|
30 |
+
|
31 |
+
return "Error: Unable to read the file with any supported encoding"
|
32 |
|
33 |
def get_answer(file, question):
|
34 |
+
if file is None:
|
35 |
+
return "Please upload a file"
|
36 |
+
if not question:
|
37 |
+
return "Please enter a question"
|
38 |
+
|
39 |
context = read_file_content(file)
|
40 |
+
if context.startswith("An error occurred") or context.startswith("Error:"):
|
41 |
+
return context
|
42 |
+
|
43 |
+
try:
|
44 |
+
answer = question_answer(question=question, context=context)
|
45 |
+
return answer["answer"]
|
46 |
+
except Exception as e:
|
47 |
+
return f"Error processing question: {str(e)}"
|
48 |
|
49 |
+
# Create the Gradio interface
|
50 |
+
demo = gr.Interface(
|
51 |
+
fn=get_answer,
|
52 |
+
inputs=[
|
53 |
+
gr.File(label="Upload your file (.txt)", type="file"),
|
54 |
+
gr.Textbox(label="Input your question", lines=1, placeholder="Enter your question here...")
|
55 |
+
],
|
56 |
+
outputs=[
|
57 |
+
gr.Textbox(label="Answer", lines=2)
|
58 |
+
],
|
59 |
+
title="Document Question & Answer Chatbot",
|
60 |
+
description="Upload a text document and ask questions about its content. The AI will find relevant answers from the text.",
|
61 |
+
examples=[
|
62 |
+
["sample.txt", "What is the main topic?"]
|
63 |
+
]
|
64 |
+
)
|
65 |
|
66 |
+
if __name__ == "__main__":
|
67 |
+
demo.launch()
|