Spaces:
Running
on
Zero
Running
on
Zero
File size: 37,539 Bytes
d8b0170 4167ce8 26a5d91 d8b0170 9e1dbe1 364a3b9 2adaaee 6695bc6 1341aa0 631e75c 6fbeb7f 51bce82 f8d4d9e d4cc1fc f8d4d9e 42081fd 12bfca0 992baec ea6676d e313b15 829dc10 42081fd 8690539 1471520 8690539 d8b0170 8c8e7b4 d8b0170 8c8e7b4 d8b0170 17b8b1d d8b0170 2396c5a d8b0170 1341aa0 4b9e6c5 d95eaa8 d8b0170 4d779d6 1341aa0 765b409 992baec d8b0170 30ddcbf dc84d2e 30ddcbf 5d26056 ebd18a0 f6ffc29 c955553 992baec c0ef521 7a5454a 1271363 703c5e6 c0ef521 992baec c0ef521 703c5e6 df4658b 2f1c53d cc298b6 e6ca355 b94939a e6ca355 51bce82 92b1582 cc298b6 d8b0170 2f1c53d d8b0170 807bbb1 631e75c ea0b581 6fbeb7f f66062c fd6f49c d877871 ea0b581 6fbeb7f 631e75c 7401e4f 992baec 966b4a8 d8b0170 2ad75ef 11dc7fe 4167ce8 036bef7 d8b0170 4e32b83 d8b0170 4179c8f 8c8e7b4 e6ca355 8c8e7b4 e6ca355 8c8e7b4 e6ca355 690a432 ea0b581 690a432 4d5c246 690a432 ea0b581 690a432 70e7ee7 cb1fed0 690a432 ea0b581 690a432 f40a3f9 690a432 6fbeb7f 690a432 8a63394 ea0b581 a5a0693 9eddcb4 177e0b7 9eddcb4 56daa8c 807bbb1 633ba49 6183ddd 73b4de6 9eddcb4 7401e4f 992baec 807bbb1 9eddcb4 9e59bb0 b74b8c1 631e75c 690a432 6fbeb7f f66062c 690a432 73b4de6 b74b8c1 993153a 6fbeb7f f66062c 690a432 73b4de6 633ba49 b74b8c1 993153a 6fbeb7f f66062c 690a432 c52bbaf 633ba49 b74b8c1 993153a 6fbeb7f f66062c 690a432 d5f0fef 633ba49 b74b8c1 993153a 6fbeb7f f66062c 690a432 d5f0fef 633ba49 1341aa0 91a043c 1341aa0 631e75c cb1fed0 4167ce8 ea0b581 4167ce8 1341aa0 3b566ce 807bbb1 633ba49 1341aa0 7401e4f 6183ddd 633ba49 807bbb1 7401e4f 1341aa0 6b7a148 1341aa0 8c8e7b4 1341aa0 807bbb1 9eddcb4 633ba49 eae1771 807bbb1 d8b0170 f9449cf d8b0170 cff2130 807bbb1 56daa8c 807bbb1 633ba49 6183ddd 73b4de6 8e1fc92 d8b0170 992baec 807bbb1 e74e0f4 9e59bb0 6b79c72 73b4de6 993153a 73b4de6 633ba49 993153a 633ba49 993153a 633ba49 993153a 633ba49 1341aa0 91a043c 1341aa0 3b566ce 807bbb1 633ba49 1341aa0 7401e4f 6183ddd 633ba49 807bbb1 7401e4f 1341aa0 6b7a148 1341aa0 8c8e7b4 1341aa0 807bbb1 a6920aa 633ba49 eae1771 807bbb1 a6920aa f9449cf a6920aa cff2130 807bbb1 56daa8c 807bbb1 633ba49 6183ddd 73b4de6 eae1771 a6920aa 992baec 807bbb1 e74e0f4 9e59bb0 6b79c72 73b4de6 993153a 73b4de6 633ba49 993153a 633ba49 993153a 633ba49 993153a 633ba49 1341aa0 91a043c 1341aa0 3b566ce 807bbb1 633ba49 1341aa0 7401e4f 6183ddd 633ba49 807bbb1 7401e4f 1341aa0 6b7a148 1341aa0 8c8e7b4 1341aa0 807bbb1 4147862 d8b0170 8a296d6 06b376e e364109 06b376e 8a296d6 3c35dc3 8a296d6 3c35dc3 d8b0170 be666f7 6183ddd be666f7 6183ddd be666f7 56daa8c 633ba49 6183ddd 633ba49 6183ddd 633ba49 807bbb1 633ba49 6183ddd 633ba49 be666f7 633ba49 6183ddd 633ba49 6183ddd 633ba49 6183ddd 633ba49 6183ddd 633ba49 6183ddd 633ba49 6183ddd 633ba49 d8b0170 2ad75ef d8b0170 807bbb1 fe5ad45 d8b0170 807bbb1 d8b0170 7e95f51 d8b0170 172acd9 d8b0170 172acd9 d8b0170 6cca08f d8b0170 ae9f309 d8b0170 992f3e7 d8b0170 1341aa0 d8b0170 9eddcb4 1341aa0 807bbb1 633ba49 6183ddd 633ba49 73b4de6 9eddcb4 807bbb1 9eddcb4 e0b3ce3 d8b0170 e0b3ce3 eae1771 d8b0170 1341aa0 807bbb1 633ba49 6183ddd 633ba49 73b4de6 d8b0170 807bbb1 d8b0170 eae1771 a6920aa eae1771 a6920aa e0b3ce3 eae1771 a6920aa 1341aa0 807bbb1 633ba49 6183ddd 633ba49 73b4de6 a6920aa 807bbb1 a6920aa d8b0170 992f631 d8b0170 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 |
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
from typing import Tuple
import paramiko
import datetime
from gradio import themes
from image_gen_aux import UpscaleWithModel
from ip_adapter import IPAdapterXL
from huggingface_hub import snapshot_download
import torch
from diffusers import AutoencoderKL, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from transformers import AutoTokenizer, AutoModelForCausalLM, CLIPTextModelWithProjection, CLIPTextModel, Blip2Processor, Blip2ForConditionalGeneration, pipeline, Phi3ForCausalLM
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
#torch.backends.cuda.preferred_blas_library="cublas"
# torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
os.putenv("HF_HUB_ENABLE_HF_TRANSFER","1")
FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
DESCRIPTIONXX = """
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 IP Adapter ⚡⚡⚡⚡
"""
examples = [
"Many apples splashed with drops of water within a fancy bowl 4k, hdr --v 6.0 --style raw",
"A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
device = torch.device("cuda:0")
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")
## load IP Adapter
repo_id = "ford442/SDXL-IP_ADAPTER"
subfolder = "image_encoder"
subfolder2 = "ip_adapter"
local_repo_path = snapshot_download(repo_id=repo_id, repo_type="model")
local_folder = os.path.join(local_repo_path, subfolder)
local_folder2 = os.path.join(local_repo_path, subfolder2) # Path to the ip_adapter dir
ip_ckpt = os.path.join(local_folder2, "ip-adapter_sdxl_vit-h.bin") # Correct path
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
if style_name in styles:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
else:
p, n = styles[DEFAULT_STYLE_NAME]
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
def load_and_prepare_model():
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", safety_checker=None)
vaeX = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, low_cpu_mem_usage=False, torch_dtype=torch.float32, token=True) #.to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
pipe = StableDiffusionXLPipeline.from_pretrained(
'ford442/RealVisXL_V5.0_BF16',
# 'SG161222/RealVisXL_V5.0',
#'John6666/uber-realistic-porn-merge-xl-urpmxl-v3-sdxl',
#torch_dtype=torch.bfloat16,
add_watermarker=False,
#use_safetensors=True,
token=HF_TOKEN,
text_encoder=None,
text_encoder_2=None,
vae=None,
)
'''
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
'''
pipe.vae=vaeX
pipe.to(device=device, dtype=torch.bfloat16)
#pipe.vae.to(device=device, dtype=torch.bfloat16)
#pipe.vae.do_resize=False
#pipe.vae.do_rescale=False
#pipe.vae.do_convert_rgb=True
#pipe.vae.vae_scale_factor=8
#pipe.unet.set_default_attn_processor()
pipe.vae.set_default_attn_processor()
print(f'Pipeline: ')
#print(f'_optional_components: {pipe._optional_components}')
#print(f'watermark: {pipe.watermark}')
print(f'image_processor: {pipe.image_processor}')
#print(f'feature_extractor: {pipe.feature_extractor}')
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
#print(f'UNET: {pipe.unet}')
pipe.watermark=None
pipe.safety_checker=None
return pipe
# Preload and compile both models
pipe = load_and_prepare_model()
# text models
#checkpoint = "microsoft/Phi-3.5-mini-instruct"
checkpoint = "ford442/Phi-3.5-mini-instruct-bf16"
#captioner = pipeline(model="ydshieh/vit-gpt2-coco-en",device='cuda:0', task="image-to-text")
captioner_2 = pipeline(model="Salesforce/blip-image-captioning-base",device='cuda', task="image-to-text")
#captioner_3 = pipeline(model="ford442/blip-image-to-text-large-bf16",device='cuda', task="image-to-text")
model5 = Blip2ForConditionalGeneration.from_pretrained("ford442/blip2-image-to-text-bf16").to('cuda')
processor5 = Blip2Processor.from_pretrained("ford442/blip2-image-to-text-bf16")
txt_tokenizer = AutoTokenizer.from_pretrained(checkpoint, device_map='cuda', add_prefix_space=False)
txt_tokenizer.tokenizer_legacy=False
model = Phi3ForCausalLM.from_pretrained(checkpoint).to('cuda:0')
#model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='cuda') #.to('cuda')
ip_model = IPAdapterXL(pipe, local_folder, ip_ckpt, device)
text_encoder=CLIPTextModel.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder',token=True).to(device=device, dtype=torch.bfloat16)
text_encoder_2=CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
MAX_SEED = np.iinfo(np.int32).max
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
def filter_text(text,phraseC):
"""Filters out the text up to and including 'Rewritten Prompt:'."""
phrase = "Rewritten Prompt:"
phraseB = "rewritten text:"
pattern = f"(.*?){re.escape(phrase)}(.*)"
patternB = f"(.*?){re.escape(phraseB)}(.*)"
# matchB = re.search(patternB, text)
matchB = re.search(patternB, text, flags=re.DOTALL)
if matchB:
filtered_text = matchB.group(2)
match = re.search(pattern, filtered_text, flags=re.DOTALL)
if match:
filtered_text = match.group(2)
filtered_text = re.sub(phraseC, "", filtered_text, flags=re.DOTALL) # Replaces the matched pattern with an empty string
return filtered_text
else:
return filtered_text
else:
# Handle the case where no match is found
return text
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name,optimize=False,compress_level=0)
return unique_name
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
filename= f'IP_{timestamp}.txt'
with open(filename, "w") as f:
f.write(f"Realvis 5.0 IP Adapter \n")
f.write(f"Date/time: {timestamp} \n")
f.write(f"Prompt: {prompt} \n")
f.write(f"Steps: {num_inference_steps} \n")
f.write(f"Guidance Scale: {guidance_scale} \n")
f.write(f"SPACE SETUP: \n")
f.write(f"Model UNET: ford442/RealVisXL_V5.0_BF16 \n")
upload_to_ftp(filename)
def captioning(img):
prompts_array = [
"Adjectives describing this scene are:",
"The color scheme of this image is",
"This scene could be described in detail as",
"The characters in this scene are",
"The larger details in this scene include",
"The smaller details in this scene include",
"The feeling this scene seems like",
"The setting of this scene must be located",
# Add more prompts here
]
output_prompt=[]
# Initial caption generation without a prompt:
inputsa = processor5(images=img, return_tensors="pt").to('cuda')
generated_ids = model5.generate(**inputsa, min_length=32, max_length=64)
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
output_prompt.append(generated_text)
print(generated_text)
# Loop through prompts array:
for prompt in prompts_array:
inputs = processor5(images=img, text=prompt, return_tensors="pt").to('cuda')
generated_ids = model5.generate(**inputs) # Adjust max_length if needed
generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
response_text = generated_text.replace(prompt, "").strip() #Or could try .split(prompt, 1)[-1].strip()
output_prompt.append(response_text)
print(f"{response_text}\n") # Print only the response text
# Continue conversation:
# inputf = processor5(images=img, text=generated_text + 'So therefore', return_tensors="pt").to('cuda')
# generated_ids = model5.generate(**inputf, min_length=24, max_length=42)
# generated_text = processor5.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
# response_text = generated_text.replace(generated_text, "").strip() # Remove the previous text plus 'So therefore'
# print(response_text)
#output_prompt.append(response_text)
print(output_prompt)
return output_prompt
def expand_prompt(prompt):
system_prompt_rewrite = (
"You are an AI assistant that rewrites image prompts to be more descriptive and detailed."
)
user_prompt_rewrite = (
"Rewrite this prompt to be more descriptive and detailed and only return the rewritten text: "
)
user_prompt_rewrite_2 = (
"Rephrase this scene to have more elaborate details: "
)
input_text = f"{system_prompt_rewrite} {user_prompt_rewrite} {prompt}"
input_text_2 = f"{system_prompt_rewrite} {user_prompt_rewrite_2} {prompt}"
print("-- got prompt --")
# Encode the input text and include the attention mask
encoded_inputs = txt_tokenizer(input_text, return_tensors="pt", return_attention_mask=True).to("cuda:0")
encoded_inputs_2 = txt_tokenizer(input_text_2, return_tensors="pt", return_attention_mask=True).to("cuda:0")
# Ensure all values are on the correct device
input_ids = encoded_inputs["input_ids"].to("cuda:0")
input_ids_2 = encoded_inputs_2["input_ids"].to("cuda:0")
attention_mask = encoded_inputs["attention_mask"].to("cuda:0")
attention_mask_2 = encoded_inputs_2["attention_mask"].to("cuda:0")
print("-- tokenize prompt --")
# Google T5
#input_ids = txt_tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=512,
temperature=0.2,
top_p=0.9,
do_sample=True,
)
outputs_2 = model.generate(
input_ids=input_ids_2,
attention_mask=attention_mask_2,
max_new_tokens=65,
temperature=0.2,
top_p=0.9,
do_sample=True,
)
# Use the encoded tensor 'text_inputs' here
enhanced_prompt = txt_tokenizer.decode(outputs[0], skip_special_tokens=True)
enhanced_prompt_2 = txt_tokenizer.decode(outputs_2[0], skip_special_tokens=True)
print('-- generated prompt --')
enhanced_prompt = filter_text(enhanced_prompt,prompt)
enhanced_prompt_2 = filter_text(enhanced_prompt_2,prompt)
print('-- filtered prompt --')
print(enhanced_prompt)
print('-- filtered prompt 2 --')
print(enhanced_prompt_2)
enh_prompt=[enhanced_prompt,enhanced_prompt_2]
return enh_prompt
@spaces.GPU(duration=40)
def generate_30(
prompt: str = "",
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
latent_file = gr.File(), # Add latents file input
latent_file_2 = gr.File(), # Add latents file input
latent_file_3 = gr.File(), # Add latents file input
latent_file_4 = gr.File(), # Add latents file input
latent_file_5 = gr.File(), # Add latents file input
text_scale: float = 1.0,
ip_scale: float = 1.0,
latent_file_1_scale: float = 1.0,
latent_file_2_scale: float = 1.0,
latent_file_3_scale: float = 1.0,
latent_file_4_scale: float = 1.0,
latent_file_5_scale: float = 1.0,
samples=1,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
pipe.text_encoder=text_encoder
pipe.text_encoder_2=text_encoder_2
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
if latent_file is not None: # Check if a latent file is provided
sd_image_a = Image.open(latent_file.name).convert('RGB')
sd_image_a.resize((height,width), Image.LANCZOS)
caption=[]
caption_2=[]
#caption.append(captioner(sd_image_a))
caption.append(captioner_2(sd_image_a))
#caption.append(captioner_3(sd_image_a))
caption_2.append(captioning(sd_image_a))
if latent_file_2 is not None: # Check if a latent file is provided
sd_image_b = Image.open(latent_file_2.name).convert('RGB')
sd_image_b.resize((height,width), Image.LANCZOS)
#caption.append(captioner(sd_image_b))
caption.append(captioner_2(sd_image_b))
#caption.append(captioner_3(sd_image_b))
caption_2.append(captioning(sd_image_b))
else:
sd_image_b = None
if latent_file_3 is not None: # Check if a latent file is provided
sd_image_c = Image.open(latent_file_3.name).convert('RGB')
sd_image_c.resize((height,width), Image.LANCZOS)
#caption.append(captioner(sd_image_c))
caption.append(captioner_2(sd_image_c))
#caption.append(captioner_3(sd_image_c))
caption_2.append(captioning(sd_image_c))
else:
sd_image_c = None
if latent_file_4 is not None: # Check if a latent file is provided
sd_image_d = Image.open(latent_file_4.name).convert('RGB')
sd_image_d.resize((height,width), Image.LANCZOS)
#caption.append(captioner(sd_image_d))
caption.append(captioner_2(sd_image_d))
#caption.append(captioner_3(sd_image_d))
caption_2.append(captioning(sd_image_d))
else:
sd_image_d = None
if latent_file_5 is not None: # Check if a latent file is provided
sd_image_e = Image.open(latent_file_5.name).convert('RGB')
sd_image_e.resize((height,width), Image.LANCZOS)
#caption.append(captioner(sd_image_e))
caption.append(captioner_2(sd_image_e))
#caption.append(captioner_3(sd_image_e))
caption_2.append(captioning(sd_image_e))
else:
sd_image_e = None
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename= f'rv_IP_{timestamp}.png'
print("-- using image file --")
print(caption)
print(caption_2)
print("-- generating further caption --")
expand_prompt(prompt)
expand_prompt(caption)
expand_prompt(caption_2)
print('-- generating image --')
sd_image = ip_model.generate(
pil_image_1=sd_image_a,
pil_image_2=sd_image_b,
pil_image_3=sd_image_c,
pil_image_4=sd_image_d,
pil_image_5=sd_image_e,
prompt=prompt,
negative_prompt=negative_prompt,
text_scale=text_scale,
ip_scale=ip_scale,
scale_1=latent_file_1_scale,
scale_2=latent_file_2_scale,
scale_3=latent_file_3_scale,
scale_4=latent_file_4_scale,
scale_5=latent_file_5_scale,
num_samples=samples,
seed=seed,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
)
sd_image[0].save(filename,optimize=False,compress_level=0)
upload_to_ftp(filename)
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
torch.set_float32_matmul_precision("medium")
with torch.no_grad():
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
downscale_path = f"rvIP_upscale_{timestamp}.png"
downscale1.save(downscale_path,optimize=False,compress_level=0)
upload_to_ftp(downscale_path)
image_paths = [save_image(downscale1)]
else:
print('-- IMAGE REQUIRED --')
return image_paths
@spaces.GPU(duration=70)
def generate_60(
prompt: str = "",
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
latent_file = gr.File(), # Add latents file input
latent_file_2 = gr.File(), # Add latents file input
latent_file_3 = gr.File(), # Add latents file input
latent_file_4 = gr.File(), # Add latents file input
latent_file_5 = gr.File(), # Add latents file input
text_scale: float = 1.0,
ip_scale: float = 1.0,
latent_file_1_scale: float = 1.0,
latent_file_2_scale: float = 1.0,
latent_file_3_scale: float = 1.0,
latent_file_4_scale: float = 1.0,
latent_file_5_scale: float = 1.0,
samples=1,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
pipe.text_encoder=text_encoder
pipe.text_encoder_2=text_encoder_2
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
if latent_file is not None: # Check if a latent file is provided
sd_image_a = Image.open(latent_file.name)
if latent_file_2 is not None: # Check if a latent file is provided
sd_image_b = Image.open(latent_file_2.name)
sd_image_b.resize((height,width), Image.LANCZOS)
else:
sd_image_b = None
if latent_file_3 is not None: # Check if a latent file is provided
sd_image_c = Image.open(latent_file_3.name)
sd_image_c.resize((height,width), Image.LANCZOS)
else:
sd_image_c = None
if latent_file_4 is not None: # Check if a latent file is provided
sd_image_d = Image.open(latent_file_4.name)
sd_image_d.resize((height,width), Image.LANCZOS)
else:
sd_image_d = None
if latent_file_5 is not None: # Check if a latent file is provided
sd_image_e = Image.open(latent_file_5.name)
sd_image_e.resize((height,width), Image.LANCZOS)
else:
sd_image_e = None
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename= f'rv_IP_{timestamp}.png'
print("-- using image file --")
print('-- generating image --')
sd_image = ip_model.generate(
pil_image_1=sd_image_a,
pil_image_2=sd_image_b,
pil_image_3=sd_image_c,
pil_image_4=sd_image_d,
pil_image_5=sd_image_e,
prompt=prompt,
negative_prompt=negative_prompt,
text_scale=text_scale,
ip_scale=ip_scale,
scale_1=latent_file_1_scale,
scale_2=latent_file_2_scale,
scale_3=latent_file_3_scale,
scale_4=latent_file_4_scale,
scale_5=latent_file_5_scale,
num_samples=samples,
seed=seed,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
)
sd_image[0].save(filename,optimize=False,compress_level=0)
upload_to_ftp(filename)
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
torch.set_float32_matmul_precision("medium")
with torch.no_grad():
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
downscale_path = f"rvIP_upscale_{timestamp}.png"
downscale1.save(downscale_path,optimize=False,compress_level=0)
upload_to_ftp(downscale_path)
image_paths = [save_image(downscale1)]
else:
print('-- IMAGE REQUIRED --')
return image_paths
@spaces.GPU(duration=100)
def generate_90(
prompt: str = "",
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
latent_file = gr.File(), # Add latents file input
latent_file_2 = gr.File(), # Add latents file input
latent_file_3 = gr.File(), # Add latents file input
latent_file_4 = gr.File(), # Add latents file input
latent_file_5 = gr.File(), # Add latents file input
text_scale: float = 1.0,
ip_scale: float = 1.0,
latent_file_1_scale: float = 1.0,
latent_file_2_scale: float = 1.0,
latent_file_3_scale: float = 1.0,
latent_file_4_scale: float = 1.0,
latent_file_5_scale: float = 1.0,
samples=1,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
pipe.text_encoder=text_encoder
pipe.text_encoder_2=text_encoder_2
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
if latent_file is not None: # Check if a latent file is provided
sd_image_a = Image.open(latent_file.name)
if latent_file_2 is not None: # Check if a latent file is provided
sd_image_b = Image.open(latent_file_2.name)
sd_image_b.resize((height,width), Image.LANCZOS)
else:
sd_image_b = None
if latent_file_3 is not None: # Check if a latent file is provided
sd_image_c = Image.open(latent_file_3.name)
sd_image_c.resize((height,width), Image.LANCZOS)
else:
sd_image_c = None
if latent_file_4 is not None: # Check if a latent file is provided
sd_image_d = Image.open(latent_file_4.name)
sd_image_d.resize((height,width), Image.LANCZOS)
else:
sd_image_d = None
if latent_file_5 is not None: # Check if a latent file is provided
sd_image_e = Image.open(latent_file_5.name)
sd_image_e.resize((height,width), Image.LANCZOS)
else:
sd_image_e = None
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename= f'rv_IP_{timestamp}.png'
print("-- using image file --")
print('-- generating image --')
#with torch.no_grad():
sd_image = ip_model.generate(
pil_image_1=sd_image_a,
pil_image_2=sd_image_b,
pil_image_3=sd_image_c,
pil_image_4=sd_image_d,
pil_image_5=sd_image_e,
prompt=prompt,
negative_prompt=negative_prompt,
text_scale=text_scale,
ip_scale=ip_scale,
scale_1=latent_file_1_scale,
scale_2=latent_file_2_scale,
scale_3=latent_file_3_scale,
scale_4=latent_file_4_scale,
scale_5=latent_file_5_scale,
num_samples=samples,
seed=seed,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
)
sd_image[0].save(filename,optimize=False,compress_level=0)
upload_to_ftp(filename)
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
torch.set_float32_matmul_precision("medium")
with torch.no_grad():
upscale = upscaler(sd_image, tiling=True, tile_width=256, tile_height=256)
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
downscale_path = f"rvIP_upscale_{timestamp}.png"
downscale1.save(downscale_path,optimize=False,compress_level=0)
upload_to_ftp(downscale_path)
image_paths = [save_image(downscale1)]
else:
print('-- IMAGE REQUIRED --')
return image_paths
def load_predefined_images1():
predefined_images1 = [
"assets/7.png",
"assets/8.png",
"assets/9.png",
"assets/1.png",
"assets/2.png",
"assets/3.png",
"assets/4.png",
"assets/5.png",
"assets/6.png",
]
return predefined_images1
css = '''
#col-container {
margin: 0 auto;
max-width: 640px;
}
h1{text-align:center}
footer {
visibility: hidden
}
body {
background-color: green;
}
'''
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
gr.Markdown(DESCRIPTIONXX)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
text_strength = gr.Slider(
label="Text Strength",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
run_button_30 = gr.Button("Run 30 Seconds", scale=0)
run_button_60 = gr.Button("Run 60 Seconds", scale=0)
run_button_90 = gr.Button("Run 90 Seconds", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
ip_strength = gr.Slider(
label="Image Strength",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
with gr.Row():
latent_file = gr.File(label="Image Prompt (Required)")
file_1_strength = gr.Slider(
label="Img 1 %",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
latent_file_2 = gr.File(label="Image Prompt 2 (Optional)")
file_2_strength = gr.Slider(
label="Img 2 %",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
latent_file_3 = gr.File(label="Image Prompt 3 (Optional)")
file_3_strength = gr.Slider(
label="Img 3 %",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
latent_file_4 = gr.File(label="Image Prompt 4 (Optional)")
file_4_strength = gr.Slider(
label="Img 4 %",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
latent_file_5 = gr.File(label="Image Prompt 5 (Optional)")
file_5_strength = gr.Slider(
label="Img 5 %",
minimum=0.0,
maximum=16.0,
step=0.01,
value=1.0,
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Row():
with gr.Column(scale=1):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
visible=True,
)
samples = gr.Slider(
label="Samples",
minimum=0,
maximum=20,
step=1,
value=1,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
height = gr.Slider(
label="Height",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=30,
step=0.1,
value=3.8,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=1000,
step=10,
value=170,
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
run_button_30.click,
],
# api_name="generate", # Add this line
fn=generate_30,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
latent_file,
latent_file_2,
latent_file_3,
latent_file_4,
latent_file_5,
text_strength,
ip_strength,
file_1_strength,
file_2_strength,
file_3_strength,
file_4_strength,
file_5_strength,
samples,
],
outputs=[result],
)
gr.on(
triggers=[
run_button_60.click,
],
# api_name="generate", # Add this line
fn=generate_60,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
latent_file,
latent_file_2,
latent_file_3,
latent_file_4,
latent_file_5,
text_strength,
ip_strength,
file_1_strength,
file_2_strength,
file_3_strength,
file_4_strength,
file_5_strength,
samples,
],
outputs=[result],
)
gr.on(
triggers=[
run_button_90.click,
],
# api_name="generate", # Add this line
fn=generate_90,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
latent_file,
latent_file_2,
latent_file_3,
latent_file_4,
latent_file_5,
text_strength,
ip_strength,
file_1_strength,
file_2_strength,
file_3_strength,
file_4_strength,
file_5_strength,
samples,
],
outputs=[result],
)
gr.Markdown("### REALVISXL V5.0")
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())
#gr.Markdown("### LIGHTNING V5.0")
#predefined_gallery = gr.Gallery(label="LIGHTNING V5.0", columns=3, show_label=False, value=load_predefined_images())
gr.Markdown(
"""
<div style="text-align: justify;">
⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.
<a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
</div>
""")
def text_generation(input_text, seed):
full_prompt = "Text Generator Application by ecarbo"
return full_prompt
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"
if __name__ == "__main__":
demo_interface = demo.queue(max_size=50) # Remove .launch() here
text_gen_interface = gr.Interface(
fn=text_generation,
inputs=[
gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
gr.Number(value=10, label="Enter seed number")
],
outputs=gr.Textbox(label="Text Generated"),
title=title,
description=description,
)
combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
combined_interface.launch(show_api=False) |