Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Evaluation Script
|
2 |
+
```
|
3 |
+
"""Evaluation script for the custom dataset."""
|
4 |
+
|
5 |
+
from pylate import evaluation, indexes, models, retrieve
|
6 |
+
|
7 |
+
model = models.ColBERT(
|
8 |
+
model_name_or_path="sigridjineth/ModernBERT-Korean-ColBERT-preview-v1",
|
9 |
+
document_length=300,
|
10 |
+
)
|
11 |
+
index = indexes.Voyager(override=True)
|
12 |
+
retriever = retrieve.ColBERT(index=index)
|
13 |
+
|
14 |
+
documents, queries, qrels = evaluation.load_custom_dataset(
|
15 |
+
"datasets/miracl_ko", split="dev"
|
16 |
+
)
|
17 |
+
|
18 |
+
documents_embeddings = model.encode(
|
19 |
+
sentences=[document["text"] for document in documents],
|
20 |
+
batch_size=32,
|
21 |
+
is_query=False,
|
22 |
+
show_progress_bar=True,
|
23 |
+
)
|
24 |
+
|
25 |
+
index.add_documents(
|
26 |
+
documents_ids=[document["id"] for document in documents],
|
27 |
+
documents_embeddings=documents_embeddings,
|
28 |
+
)
|
29 |
+
|
30 |
+
queries_embeddings = model.encode(
|
31 |
+
sentences=queries,
|
32 |
+
batch_size=32,
|
33 |
+
is_query=True,
|
34 |
+
show_progress_bar=True,
|
35 |
+
)
|
36 |
+
|
37 |
+
scores = retriever.retrieve(queries_embeddings=queries_embeddings, k=100)
|
38 |
+
|
39 |
+
|
40 |
+
evaluation_scores = evaluation.evaluate(
|
41 |
+
scores=scores,
|
42 |
+
qrels=qrels,
|
43 |
+
queries=queries,
|
44 |
+
metrics=["map", "ndcg@10", "ndcg@100", "recall@10", "recall@100"],
|
45 |
+
)
|
46 |
+
|
47 |
+
print(evaluation_scores)
|
48 |
+
```
|