--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model-index: - name: hc-tinyllama-alpaca results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: imdb_1k_alpaca.jsonl type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/qlora-out hub_model_id: satish860/hc-tinyllama-alpaca adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# hc-tinyllama-alpaca This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 8.0151 | 0.0851 | 1 | 7.9045 | | 7.967 | 0.2553 | 3 | 7.7350 | | 6.5633 | 0.5106 | 6 | 4.8012 | | 1.5838 | 0.7660 | 9 | 0.7756 | | 0.2319 | 1.0213 | 12 | 0.1592 | | 0.0669 | 1.2340 | 15 | 0.0973 | | 0.0344 | 1.4894 | 18 | 0.0453 | | 0.1146 | 1.7447 | 21 | 0.0754 | | 0.0896 | 2.0 | 24 | 0.0517 | | 0.0293 | 2.2340 | 27 | 0.0486 | | 0.0378 | 2.4894 | 30 | 0.0566 | | 0.0523 | 2.7447 | 33 | 0.0270 | | 0.0886 | 3.0 | 36 | 0.0226 | | 0.0504 | 3.2128 | 39 | 0.0232 | | 0.089 | 3.4681 | 42 | 0.0225 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1