lean4-compile / gpt_pass_rate_multi_pass.py
rookiemango's picture
Upload folder using huggingface_hub
dddc1ae verified
raw
history blame
1.92 kB
import pdb
import subprocess
import re
# Output file
output_file = "pass_rate_output.txt"
# Clearing the output file before appending new content
with open(output_file, "w") as file:
file.write("")
# List of input paths
input_path_lists = [
"test/zero_shot/wild_test/generation/lean4_random_15k_all/2/1/",
]
def get_output(input_string, k):
pattern = r"gpt_result/(\w+)/(\w+)"
match = re.search(pattern, input_string)
if match:
part1 = match.group(1)
part2 = match.group(2)
result = f"gpt_result/{part2}/{part1}_pass{k}.json"
print(result)
return result
else:
print("No match found.")
return None
# List of input paths
input_path_lists = [
# "gpt_result/lean_basic/gpt4/",
# "gpt_result/lean_random/gpt4/",
"gpt_result/wild/gpt4/",
# "gpt_result/lean_basic/gpt3/",
# "gpt_result/lean_random/gpt3/",
"gpt_result/wild/gpt3/",
]
# Iterate through the input paths and run the command
for input_path in input_path_lists:
k = 5
if "wild" in input_path or "gsm8k_train" in input_path or "math_train" in input_path:
print(f"wild")
print(f"Running for input path: {input_path}", file=open(output_file, "a"))
command = f"python3 gpt_pass_rate_new_notlean_test.py --input_path {input_path} --output_path {get_output(input_path,k)} --k {k}"
subprocess.run(command, shell=True, stdout=open(output_file, "a"), stderr=subprocess.STDOUT)
print("\n\n",file=open(output_file, "a"))
else:
print(f"lean")
print(f"Running for input path: {input_path}", file=open(output_file, "a"))
command = f"python3 gpt_pass_rate_new_test.py --input_path {input_path} --output_path {get_output(input_path, k)} --k {k}"
subprocess.run(command, shell=True, stdout=open(output_file, "a"), stderr=subprocess.STDOUT)
print("\n\n",file=open(output_file, "a"))