qaihm-bot commited on
Commit
01a9340
·
verified ·
1 Parent(s): ca1476f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +17 -20
README.md CHANGED
@@ -36,30 +36,26 @@ More details on model performance across various devices, can be found
36
 
37
  | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  |---|---|---|---|---|---|---|---|---|
39
- | VITQuantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 5.248 ms | 0 - 184 MB | INT8 | NPU | [VITQuantized.so](https://huggingface.co/qualcomm/VITQuantized/blob/main/VITQuantized.so) |
40
- | VITQuantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 39.154 ms | 0 - 155 MB | INT8 | NPU | [VITQuantized.onnx](https://huggingface.co/qualcomm/VITQuantized/blob/main/VITQuantized.onnx) |
41
- | VITQuantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.522 ms | 0 - 45 MB | INT8 | NPU | [VITQuantized.so](https://huggingface.co/qualcomm/VITQuantized/blob/main/VITQuantized.so) |
42
- | VITQuantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 31.231 ms | 0 - 82 MB | INT8 | NPU | [VITQuantized.onnx](https://huggingface.co/qualcomm/VITQuantized/blob/main/VITQuantized.onnx) |
43
- | VITQuantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 3.255 ms | 0 - 63 MB | INT8 | NPU | Use Export Script |
44
- | VITQuantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 33.006 ms | 0 - 83 MB | INT8 | NPU | [VITQuantized.onnx](https://huggingface.co/qualcomm/VITQuantized/blob/main/VITQuantized.onnx) |
45
- | VITQuantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 21.663 ms | 0 - 12 MB | INT8 | NPU | Use Export Script |
46
- | VITQuantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.73 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
47
- | VITQuantized | SA7255P ADP | SA7255P | QNN | 38.812 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
48
- | VITQuantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.742 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
49
- | VITQuantized | SA8295P ADP | SA8295P | QNN | 6.827 ms | 0 - 15 MB | INT8 | NPU | Use Export Script |
50
- | VITQuantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.735 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
51
  | VITQuantized | SA8775P ADP | SA8775P | QNN | 6.256 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
52
- | VITQuantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 5.956 ms | 0 - 46 MB | INT8 | NPU | Use Export Script |
53
- | VITQuantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.154 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
54
- | VITQuantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 51.116 ms | 87 - 87 MB | INT8 | NPU | [VITQuantized.onnx](https://huggingface.co/qualcomm/VITQuantized/blob/main/VITQuantized.onnx) |
55
 
56
 
57
 
58
 
59
  ## Installation
60
 
61
- This model can be installed as a Python package via pip.
62
 
 
63
  ```bash
64
  pip install qai-hub-models
65
  ```
@@ -115,8 +111,8 @@ Profiling Results
115
  VITQuantized
116
  Device : Samsung Galaxy S23 (13)
117
  Runtime : QNN
118
- Estimated inference time (ms) : 5.2
119
- Estimated peak memory usage (MB): [0, 184]
120
  Total # Ops : 903
121
  Compute Unit(s) : NPU (903 ops)
122
  ```
@@ -143,7 +139,7 @@ from qai_hub_models.models.vit_quantized import Model
143
  torch_model = Model.from_pretrained()
144
 
145
  # Device
146
- device = hub.Device("Samsung Galaxy S23")
147
 
148
  # Trace model
149
  input_shape = torch_model.get_input_spec()
@@ -235,7 +231,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
235
 
236
 
237
  ## License
238
- * The license for the original implementation of VITQuantized can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE).
 
239
  * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
240
 
241
 
 
36
 
37
  | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  |---|---|---|---|---|---|---|---|---|
39
+ | VITQuantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 5.254 ms | 0 - 214 MB | INT8 | NPU | [VITQuantized.so](https://huggingface.co/qualcomm/VITQuantized/blob/main/VITQuantized.so) |
40
+ | VITQuantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.527 ms | 0 - 43 MB | INT8 | NPU | [VITQuantized.so](https://huggingface.co/qualcomm/VITQuantized/blob/main/VITQuantized.so) |
41
+ | VITQuantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 3.258 ms | 0 - 66 MB | INT8 | NPU | Use Export Script |
42
+ | VITQuantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 21.821 ms | 0 - 12 MB | INT8 | NPU | Use Export Script |
43
+ | VITQuantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.766 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
44
+ | VITQuantized | SA7255P ADP | SA7255P | QNN | 38.733 ms | 1 - 10 MB | INT8 | NPU | Use Export Script |
45
+ | VITQuantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.748 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
46
+ | VITQuantized | SA8295P ADP | SA8295P | QNN | 7.211 ms | 0 - 15 MB | INT8 | NPU | Use Export Script |
47
+ | VITQuantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.758 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
 
 
 
48
  | VITQuantized | SA8775P ADP | SA8775P | QNN | 6.256 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
49
+ | VITQuantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 6.068 ms | 0 - 49 MB | INT8 | NPU | Use Export Script |
50
+ | VITQuantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.133 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
 
51
 
52
 
53
 
54
 
55
  ## Installation
56
 
 
57
 
58
+ Install the package via pip:
59
  ```bash
60
  pip install qai-hub-models
61
  ```
 
111
  VITQuantized
112
  Device : Samsung Galaxy S23 (13)
113
  Runtime : QNN
114
+ Estimated inference time (ms) : 5.3
115
+ Estimated peak memory usage (MB): [0, 214]
116
  Total # Ops : 903
117
  Compute Unit(s) : NPU (903 ops)
118
  ```
 
139
  torch_model = Model.from_pretrained()
140
 
141
  # Device
142
+ device = hub.Device("Samsung Galaxy S24")
143
 
144
  # Trace model
145
  input_shape = torch_model.get_input_spec()
 
231
 
232
 
233
  ## License
234
+ * The license for the original implementation of VITQuantized can be found
235
+ [here](https://github.com/pytorch/vision/blob/main/LICENSE).
236
  * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
237
 
238