Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -36,30 +36,26 @@ More details on model performance across various devices, can be found
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
-
| VITQuantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 5.
|
40 |
-
| VITQuantized | Samsung Galaxy
|
41 |
-
| VITQuantized |
|
42 |
-
| VITQuantized |
|
43 |
-
| VITQuantized |
|
44 |
-
| VITQuantized |
|
45 |
-
| VITQuantized |
|
46 |
-
| VITQuantized |
|
47 |
-
| VITQuantized |
|
48 |
-
| VITQuantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.742 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
|
49 |
-
| VITQuantized | SA8295P ADP | SA8295P | QNN | 6.827 ms | 0 - 15 MB | INT8 | NPU | Use Export Script |
|
50 |
-
| VITQuantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.735 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
|
51 |
| VITQuantized | SA8775P ADP | SA8775P | QNN | 6.256 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
|
52 |
-
| VITQuantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN |
|
53 |
-
| VITQuantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.
|
54 |
-
| VITQuantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 51.116 ms | 87 - 87 MB | INT8 | NPU | [VITQuantized.onnx](https://huggingface.co/qualcomm/VITQuantized/blob/main/VITQuantized.onnx) |
|
55 |
|
56 |
|
57 |
|
58 |
|
59 |
## Installation
|
60 |
|
61 |
-
This model can be installed as a Python package via pip.
|
62 |
|
|
|
63 |
```bash
|
64 |
pip install qai-hub-models
|
65 |
```
|
@@ -115,8 +111,8 @@ Profiling Results
|
|
115 |
VITQuantized
|
116 |
Device : Samsung Galaxy S23 (13)
|
117 |
Runtime : QNN
|
118 |
-
Estimated inference time (ms) : 5.
|
119 |
-
Estimated peak memory usage (MB): [0,
|
120 |
Total # Ops : 903
|
121 |
Compute Unit(s) : NPU (903 ops)
|
122 |
```
|
@@ -143,7 +139,7 @@ from qai_hub_models.models.vit_quantized import Model
|
|
143 |
torch_model = Model.from_pretrained()
|
144 |
|
145 |
# Device
|
146 |
-
device = hub.Device("Samsung Galaxy
|
147 |
|
148 |
# Trace model
|
149 |
input_shape = torch_model.get_input_spec()
|
@@ -235,7 +231,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
235 |
|
236 |
|
237 |
## License
|
238 |
-
* The license for the original implementation of VITQuantized can be found
|
|
|
239 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
240 |
|
241 |
|
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
+
| VITQuantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 5.254 ms | 0 - 214 MB | INT8 | NPU | [VITQuantized.so](https://huggingface.co/qualcomm/VITQuantized/blob/main/VITQuantized.so) |
|
40 |
+
| VITQuantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.527 ms | 0 - 43 MB | INT8 | NPU | [VITQuantized.so](https://huggingface.co/qualcomm/VITQuantized/blob/main/VITQuantized.so) |
|
41 |
+
| VITQuantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 3.258 ms | 0 - 66 MB | INT8 | NPU | Use Export Script |
|
42 |
+
| VITQuantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 21.821 ms | 0 - 12 MB | INT8 | NPU | Use Export Script |
|
43 |
+
| VITQuantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.766 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
|
44 |
+
| VITQuantized | SA7255P ADP | SA7255P | QNN | 38.733 ms | 1 - 10 MB | INT8 | NPU | Use Export Script |
|
45 |
+
| VITQuantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.748 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
|
46 |
+
| VITQuantized | SA8295P ADP | SA8295P | QNN | 7.211 ms | 0 - 15 MB | INT8 | NPU | Use Export Script |
|
47 |
+
| VITQuantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.758 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
|
|
|
|
|
|
|
48 |
| VITQuantized | SA8775P ADP | SA8775P | QNN | 6.256 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
|
49 |
+
| VITQuantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 6.068 ms | 0 - 49 MB | INT8 | NPU | Use Export Script |
|
50 |
+
| VITQuantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.133 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
|
|
|
51 |
|
52 |
|
53 |
|
54 |
|
55 |
## Installation
|
56 |
|
|
|
57 |
|
58 |
+
Install the package via pip:
|
59 |
```bash
|
60 |
pip install qai-hub-models
|
61 |
```
|
|
|
111 |
VITQuantized
|
112 |
Device : Samsung Galaxy S23 (13)
|
113 |
Runtime : QNN
|
114 |
+
Estimated inference time (ms) : 5.3
|
115 |
+
Estimated peak memory usage (MB): [0, 214]
|
116 |
Total # Ops : 903
|
117 |
Compute Unit(s) : NPU (903 ops)
|
118 |
```
|
|
|
139 |
torch_model = Model.from_pretrained()
|
140 |
|
141 |
# Device
|
142 |
+
device = hub.Device("Samsung Galaxy S24")
|
143 |
|
144 |
# Trace model
|
145 |
input_shape = torch_model.get_input_spec()
|
|
|
231 |
|
232 |
|
233 |
## License
|
234 |
+
* The license for the original implementation of VITQuantized can be found
|
235 |
+
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
236 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
237 |
|
238 |
|