Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -36,39 +36,39 @@ More details on model performance across various devices, can be found
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
-
| MobileNet-v2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.
|
40 |
-
| MobileNet-v2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.
|
41 |
-
| MobileNet-v2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 0.
|
42 |
-
| MobileNet-v2 | Samsung Galaxy S24 | Snapdragon
|
43 |
-
| MobileNet-v2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.
|
44 |
-
| MobileNet-v2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.
|
45 |
-
| MobileNet-v2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.
|
46 |
-
| MobileNet-v2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.733 ms |
|
47 |
-
| MobileNet-v2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.
|
48 |
-
| MobileNet-v2 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.
|
49 |
-
| MobileNet-v2 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.
|
50 |
-
| MobileNet-v2 | SA7255P ADP | SA7255P | TFLITE | 12.
|
51 |
-
| MobileNet-v2 | SA7255P ADP | SA7255P | QNN | 13.
|
52 |
-
| MobileNet-v2 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.
|
53 |
-
| MobileNet-v2 | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.
|
54 |
-
| MobileNet-v2 | SA8295P ADP | SA8295P | TFLITE | 1.
|
55 |
-
| MobileNet-v2 | SA8295P ADP | SA8295P | QNN | 1.
|
56 |
-
| MobileNet-v2 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.
|
57 |
-
| MobileNet-v2 | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.
|
58 |
-
| MobileNet-v2 | SA8775P ADP | SA8775P | TFLITE | 1.
|
59 |
-
| MobileNet-v2 | SA8775P ADP | SA8775P | QNN | 1.
|
60 |
-
| MobileNet-v2 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.
|
61 |
-
| MobileNet-v2 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.
|
62 |
-
| MobileNet-v2 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.
|
63 |
-
| MobileNet-v2 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.
|
64 |
|
65 |
|
66 |
|
67 |
|
68 |
## Installation
|
69 |
|
70 |
-
This model can be installed as a Python package via pip.
|
71 |
|
|
|
72 |
```bash
|
73 |
pip install qai-hub-models
|
74 |
```
|
@@ -125,7 +125,7 @@ MobileNet-v2
|
|
125 |
Device : Samsung Galaxy S23 (13)
|
126 |
Runtime : TFLITE
|
127 |
Estimated inference time (ms) : 0.9
|
128 |
-
Estimated peak memory usage (MB): [0,
|
129 |
Total # Ops : 71
|
130 |
Compute Unit(s) : NPU (71 ops)
|
131 |
```
|
@@ -152,7 +152,7 @@ from qai_hub_models.models.mobilenet_v2 import Model
|
|
152 |
torch_model = Model.from_pretrained()
|
153 |
|
154 |
# Device
|
155 |
-
device = hub.Device("Samsung Galaxy
|
156 |
|
157 |
# Trace model
|
158 |
input_shape = torch_model.get_input_spec()
|
@@ -244,7 +244,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
244 |
|
245 |
|
246 |
## License
|
247 |
-
* The license for the original implementation of MobileNet-v2 can be found
|
|
|
248 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
249 |
|
250 |
|
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
+
| MobileNet-v2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.883 ms | 0 - 39 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
|
40 |
+
| MobileNet-v2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.093 ms | 1 - 49 MB | FP16 | NPU | [MobileNet-v2.so](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.so) |
|
41 |
+
| MobileNet-v2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 0.897 ms | 0 - 35 MB | FP16 | NPU | [MobileNet-v2.onnx](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.onnx) |
|
42 |
+
| MobileNet-v2 | Samsung Galaxy S24 | Snapdragon�� 8 Gen 3 | TFLITE | 0.586 ms | 0 - 26 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
|
43 |
+
| MobileNet-v2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.723 ms | 1 - 23 MB | FP16 | NPU | [MobileNet-v2.so](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.so) |
|
44 |
+
| MobileNet-v2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.617 ms | 0 - 27 MB | FP16 | NPU | [MobileNet-v2.onnx](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.onnx) |
|
45 |
+
| MobileNet-v2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.636 ms | 0 - 23 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
|
46 |
+
| MobileNet-v2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.733 ms | 1 - 22 MB | FP16 | NPU | Use Export Script |
|
47 |
+
| MobileNet-v2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.641 ms | 0 - 21 MB | FP16 | NPU | [MobileNet-v2.onnx](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.onnx) |
|
48 |
+
| MobileNet-v2 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.884 ms | 0 - 40 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
|
49 |
+
| MobileNet-v2 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.042 ms | 1 - 4 MB | FP16 | NPU | Use Export Script |
|
50 |
+
| MobileNet-v2 | SA7255P ADP | SA7255P | TFLITE | 12.777 ms | 0 - 13 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
|
51 |
+
| MobileNet-v2 | SA7255P ADP | SA7255P | QNN | 13.166 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| MobileNet-v2 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.887 ms | 0 - 5 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
|
53 |
+
| MobileNet-v2 | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.041 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
|
54 |
+
| MobileNet-v2 | SA8295P ADP | SA8295P | TFLITE | 1.472 ms | 0 - 19 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
|
55 |
+
| MobileNet-v2 | SA8295P ADP | SA8295P | QNN | 1.905 ms | 0 - 14 MB | FP16 | NPU | Use Export Script |
|
56 |
+
| MobileNet-v2 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.881 ms | 0 - 50 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
|
57 |
+
| MobileNet-v2 | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.035 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
|
58 |
+
| MobileNet-v2 | SA8775P ADP | SA8775P | TFLITE | 1.478 ms | 0 - 14 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
|
59 |
+
| MobileNet-v2 | SA8775P ADP | SA8775P | QNN | 1.872 ms | 1 - 11 MB | FP16 | NPU | Use Export Script |
|
60 |
+
| MobileNet-v2 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.045 ms | 0 - 17 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
|
61 |
+
| MobileNet-v2 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.268 ms | 1 - 25 MB | FP16 | NPU | Use Export Script |
|
62 |
+
| MobileNet-v2 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.225 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
63 |
+
| MobileNet-v2 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.963 ms | 9 - 9 MB | FP16 | NPU | [MobileNet-v2.onnx](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.onnx) |
|
64 |
|
65 |
|
66 |
|
67 |
|
68 |
## Installation
|
69 |
|
|
|
70 |
|
71 |
+
Install the package via pip:
|
72 |
```bash
|
73 |
pip install qai-hub-models
|
74 |
```
|
|
|
125 |
Device : Samsung Galaxy S23 (13)
|
126 |
Runtime : TFLITE
|
127 |
Estimated inference time (ms) : 0.9
|
128 |
+
Estimated peak memory usage (MB): [0, 39]
|
129 |
Total # Ops : 71
|
130 |
Compute Unit(s) : NPU (71 ops)
|
131 |
```
|
|
|
152 |
torch_model = Model.from_pretrained()
|
153 |
|
154 |
# Device
|
155 |
+
device = hub.Device("Samsung Galaxy S24")
|
156 |
|
157 |
# Trace model
|
158 |
input_shape = torch_model.get_input_spec()
|
|
|
244 |
|
245 |
|
246 |
## License
|
247 |
+
* The license for the original implementation of MobileNet-v2 can be found
|
248 |
+
[here](https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/LICENSE).
|
249 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
250 |
|
251 |
|