File size: 1,470 Bytes
b66e413 a465380 6e2561e b66e413 37fb7ca b66e413 37fb7ca b66e413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
base_model:
- newsbang/Homer-v1.0-Qwen2.5-7B
- AIDC-AI/Marco-o1
tags:
- merge
- mergekit
- lazymergekit
- newsbang/Homer-v1.0-Qwen2.5-7B
- AIDC-AI/Marco-o1
---
# Qwen2-NextGen-8b
![](https://i.imgur.com/agufQq5.png)
Qwen2-NextGen-8b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [newsbang/Homer-v1.0-Qwen2.5-7B](https://huggingface.co/newsbang/Homer-v1.0-Qwen2.5-7B)
* [AIDC-AI/Marco-o1](https://huggingface.co/AIDC-AI/Marco-o1)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: newsbang/Homer-v1.0-Qwen2.5-7B
layer_range: [0, 12]
- sources:
- model: AIDC-AI/Marco-o1
layer_range: [8, 28]
merge_method: passthrough
tokenizer_source: union
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "powermove72/Qwen2-NextGen-8b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |