File size: 1,470 Bytes
b66e413
 
 
 
 
 
 
 
 
 
 
 
a465380
6e2561e
b66e413
37fb7ca
b66e413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37fb7ca
b66e413
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
base_model:
- newsbang/Homer-v1.0-Qwen2.5-7B
- AIDC-AI/Marco-o1
tags:
- merge
- mergekit
- lazymergekit
- newsbang/Homer-v1.0-Qwen2.5-7B
- AIDC-AI/Marco-o1
---

# Qwen2-NextGen-8b
![](https://i.imgur.com/agufQq5.png)

Qwen2-NextGen-8b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [newsbang/Homer-v1.0-Qwen2.5-7B](https://huggingface.co/newsbang/Homer-v1.0-Qwen2.5-7B)
* [AIDC-AI/Marco-o1](https://huggingface.co/AIDC-AI/Marco-o1)

## 🧩 Configuration

```yaml

slices:
  - sources:
    - model: newsbang/Homer-v1.0-Qwen2.5-7B
      layer_range: [0, 12]
  - sources:
    - model: AIDC-AI/Marco-o1
      layer_range: [8, 28]
merge_method: passthrough
tokenizer_source: union
dtype: float16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "powermove72/Qwen2-NextGen-8b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```