--- license: apache-2.0 --- These are basic classifiers and a BM25 index of Wikipedia used for data tooling research. ``` import fasttext if not os.path.exists("expert_classify.ftz"): os.system("wget http://dl.turkunlp.org/register-labeling-model/fasttext_model.bin") os.system("wget https://huggingface.co/ontocord/riverbed/resolve/main/rj_model.bin") os.system("wget https://huggingface.co/ontocord/riverbed/resolve/main/expert_classify.ftz") os.system("wget https://huggingface.co/kenhktsui/llm-data-textbook-quality-fasttext-classifer-v1/resolve/main/model_textbook_quality.bin" ### red pajama filter. pred_label "__label__wiki" is data we do not wish to keep. red_pajama_model = fasttext.load_model("rj_model.bin") (pred_label, pred_prob) = red_pajama_model.predict(text) if pred_label == "__label__cc": pred_prob = 1 - pred_prob ### turkunlp registry labeler: https://github.com/TurkuNLP/register-labeling domain_model = fasttext.load_model("fasttext_model.bin") (pred_label, pred_prob) = domain_model.predict(text) ### Pile domain such as github, arxiv, etc. pile_model = fasttext.load_model("expert_classify.ftz") (pred_label, pred_prob) = pile_model.predict(text) ### Textbook quality - e.g., textbooks are all you need textbook_model = fasttext.load_model("model_textbook_quality.bin") (pred_label, pred_prob) = pile_model.predict(text) ``` See the files here: https://huggingface.co/ontocord/riverbed/tree/main