--- base_model: cognitivecomputations/Dolphin3.0-R1-Mistral-24B datasets: - cognitivecomputations/dolphin-r1 - OpenCoder-LLM/opc-sft-stage1 - OpenCoder-LLM/opc-sft-stage2 - microsoft/orca-agentinstruct-1M-v1 - microsoft/orca-math-word-problems-200k - NousResearch/hermes-function-calling-v1 - AI-MO/NuminaMath-CoT - AI-MO/NuminaMath-TIR - allenai/tulu-3-sft-mixture - cognitivecomputations/dolphin-coder - HuggingFaceTB/smoltalk - cognitivecomputations/samantha-data - m-a-p/CodeFeedback-Filtered-Instruction - m-a-p/Code-Feedback language: - en library_name: transformers quantized_by: mradermacher --- ## About static quants of https://huggingface.co/cognitivecomputations/Dolphin3.0-R1-Mistral-24B weighted/imatrix quants are available at https://huggingface.co/mradermacher/Dolphin3.0-R1-Mistral-24B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Dolphin3.0-R1-Mistral-24B-GGUF/resolve/main/Dolphin3.0-R1-Mistral-24B.Q2_K.gguf) | Q2_K | 9.0 | | | [GGUF](https://huggingface.co/mradermacher/Dolphin3.0-R1-Mistral-24B-GGUF/resolve/main/Dolphin3.0-R1-Mistral-24B.Q3_K_S.gguf) | Q3_K_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/Dolphin3.0-R1-Mistral-24B-GGUF/resolve/main/Dolphin3.0-R1-Mistral-24B.Q3_K_M.gguf) | Q3_K_M | 11.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Dolphin3.0-R1-Mistral-24B-GGUF/resolve/main/Dolphin3.0-R1-Mistral-24B.Q3_K_L.gguf) | Q3_K_L | 12.5 | | | [GGUF](https://huggingface.co/mradermacher/Dolphin3.0-R1-Mistral-24B-GGUF/resolve/main/Dolphin3.0-R1-Mistral-24B.IQ4_XS.gguf) | IQ4_XS | 13.0 | | | [GGUF](https://huggingface.co/mradermacher/Dolphin3.0-R1-Mistral-24B-GGUF/resolve/main/Dolphin3.0-R1-Mistral-24B.Q4_K_S.gguf) | Q4_K_S | 13.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Dolphin3.0-R1-Mistral-24B-GGUF/resolve/main/Dolphin3.0-R1-Mistral-24B.Q4_K_M.gguf) | Q4_K_M | 14.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Dolphin3.0-R1-Mistral-24B-GGUF/resolve/main/Dolphin3.0-R1-Mistral-24B.Q5_K_S.gguf) | Q5_K_S | 16.4 | | | [GGUF](https://huggingface.co/mradermacher/Dolphin3.0-R1-Mistral-24B-GGUF/resolve/main/Dolphin3.0-R1-Mistral-24B.Q5_K_M.gguf) | Q5_K_M | 16.9 | | | [GGUF](https://huggingface.co/mradermacher/Dolphin3.0-R1-Mistral-24B-GGUF/resolve/main/Dolphin3.0-R1-Mistral-24B.Q6_K.gguf) | Q6_K | 19.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Dolphin3.0-R1-Mistral-24B-GGUF/resolve/main/Dolphin3.0-R1-Mistral-24B.Q8_0.gguf) | Q8_0 | 25.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.