Aymeric Roucher's picture

Aymeric Roucher

m-ric

AI & ML interests

Leading Agents at Hugging Face ๐Ÿค—

Recent Activity

liked a Space about 18 hours ago
davidberenstein1957/smolagents-and-tools
liked a dataset about 21 hours ago
open-r1/OpenR1-Math-220k
View all activity

Organizations

Hugging Face's profile picture Orange's profile picture Atmos Bank's profile picture Hugging Test Lab's profile picture Tools's profile picture HuggingFaceM4's profile picture lecocqassociate's profile picture huggingPartyParis's profile picture Supreme's profile picture FactSet's profile picture Propulse Lab's profile picture Leaderboard Organization's profile picture FactSet's profile picture CGIAR's profile picture Aperture Laboratories's profile picture AI Energy Score's profile picture C&A's profile picture Social Post Explorers's profile picture Dev Mode Explorers's profile picture Agent Collab's profile picture SLLHF's profile picture Data Agents's profile picture Hugging Face Party @ PyTorch Conference's profile picture Nerdy Face's profile picture Hugging Face Science's profile picture Agents Leaderboard's profile picture Smolagents Benchmark's profile picture Hugging Face Agents Course's profile picture

m-ric's activity

posted an update 4 days ago
view post
Post
2932
๐—”๐—ฑ๐˜†๐—ฒ๐—ป'๐˜€ ๐—ป๐—ฒ๐˜„ ๐——๐—ฎ๐˜๐—ฎ ๐—”๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐—•๐—ฒ๐—ป๐—ฐ๐—ต๐—บ๐—ฎ๐—ฟ๐—ธ ๐˜€๐—ต๐—ผ๐˜„๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐——๐—ฒ๐—ฒ๐—ฝ๐—ฆ๐—ฒ๐—ฒ๐—ธ-๐—ฅ๐Ÿญ ๐˜€๐˜๐—ฟ๐˜‚๐—ด๐—ด๐—น๐—ฒ๐˜€ ๐—ผ๐—ป ๐—ฑ๐—ฎ๐˜๐—ฎ ๐˜€๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐˜๐—ฎ๐˜€๐—ธ๐˜€! โŒ

โžก๏ธ How well do reasoning models perform on agentic tasks? Until now, all indicators seemed to show that they worked really well. On our recent reproduction of Deep Search, OpenAI's o1 was by far the best model to power an agentic system.

So when our partner Adyen built a huge benchmark of 450 data science tasks, and built data agents with smolagents to test different models, I expected reasoning models like o1 or DeepSeek-R1 to destroy the tasks at hand.

๐Ÿ‘Ž But they really missed the mark. DeepSeek-R1 only got 1 or 2 out of 10 questions correct. Similarly, o1 was only at ~13% correct answers.

๐Ÿง These results really surprised us. We thoroughly checked them, we even thought our APIs for DeepSeek were broken and colleagues Leandro Anton helped me start custom instances of R1 on our own H100s to make sure it worked well.
But there seemed to be no mistake. Reasoning LLMs actually did not seem that smart. Often, these models made basic mistakes, like forgetting the content of a folder that they had just explored, misspelling file names, or hallucinating data. Even though they do great at exploring webpages through several steps, the same level of multi-step planning seemed much harder to achieve when reasoning over files and data.

It seems like there's still lots of work to do in the Agents x Data space. Congrats to Adyen for this great benchmark, looking forward to see people proposing better agents! ๐Ÿš€

Read more in the blog post ๐Ÿ‘‰ https://huggingface.co/blog/dabstep
posted an update 7 days ago
view post
Post
9167
Introducing ๐—ผ๐—ฝ๐—ฒ๐—ป ๐——๐—ฒ๐—ฒ๐—ฝ-๐—ฅ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต by Hugging Face! ๐Ÿ’ฅ

OpenAI's latest agentic app Deep Research seems really good... But it's closed, as usual.

โฑ๏ธ So with a team of cracked colleagues, we set ourselves a 24hours deadline to replicate and open-source Deep Research! โฑ๏ธ

โžก๏ธ We built open-Deep-Research, an entirely open agent that can: navigate the web autonomously, scroll and search through pages, download and manipulate files, run calculation on data...

We aimed for the best performance: are the agent's answers really rigorous?

On GAIA benchmark, Deep Research had 67% accuracy on the validation set.
โžก๏ธ open Deep Research is at 55% (powered by o1), it is:
- the best pass@1 solution submitted
- the best open solution ๐Ÿ’ช๐Ÿ’ช

And it's only getting started ! Please jump in, drop PRs, and let's bring it to the top !

Read the blog post ๐Ÿ‘‰ https://huggingface.co/blog/open-deep-research
reacted to pagezyhf's post with ๐Ÿ”ฅ 11 days ago
view post
Post
1637
We published https://huggingface.co/blog/deepseek-r1-aws!

If you are using AWS, give a read. It is a running document to showcase how to deploy and fine-tune DeepSeek R1 models with Hugging Face on AWS.

We're working hard to enable all the scenarios, whether you want to deploy to Inference Endpoints, Sagemaker or EC2; with GPUs or with Trainium & Inferentia.

We have full support for the distilled models, DeepSeek-R1 support is coming soon!! I'll keep you posted.

Cheers
  • 1 reply
ยท
posted an update 11 days ago
view post
Post
2905
Now you can launch a code agent directly from your terminal!
โœจ ๐šœ๐š–๐š˜๐š•๐šŠ๐š๐šŽ๐š—๐š "๐šˆ๐š˜๐šž๐š› ๐š๐šŠ๐šœ๐š”" directly launches a CodeAgent
โ–ถ๏ธ This also works with web agents (replace ๐šœ๐š–๐š˜๐š•๐šŠ๐š๐šŽ๐š—๐š with ๐š ๐šŽ๐š‹๐šŠ๐š๐šŽ๐š—๐š) thanks to @merve !

๐Ÿ’พ Another treat from smolagents release 1.7.0:
Now agents have a memory mechanism, enabling many possibilities like replaying the last run with ๐šŠ๐š๐šŽ๐š—๐š.๐š›๐šŽ๐š™๐š•๐šŠ๐šข(), thank you @clefourrier !

Check the release notes here ๐Ÿ‘‰ https://github.com/huggingface/smolagents/releases/tag/v1.7.0
posted an update 14 days ago
view post
Post
3890
๐—ง๐—ต๐—ฒ ๐—›๐˜‚๐—ฏ ๐˜„๐—ฒ๐—น๐—ฐ๐—ผ๐—บ๐—ฒ๐˜€ ๐—ฒ๐˜…๐˜๐—ฒ๐—ฟ๐—ป๐—ฎ๐—น ๐—ถ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ถ๐—ฑ๐—ฒ๐—ฟ๐˜€!

โœ… Hosting our own inference was not enough: now the Hub 4 new inference providers: fal, Replicate, SambaNova Systems, & Together AI.

Check model cards on the Hub: you can now, in 1 click, use inference from various providers (cf video demo)

Their inference can also be used through our Inference API client. There, you can use either your custom provider key, or your HF token, then billing will be handled directly on your HF account, as a way to centralize all expenses.

๐Ÿ’ธ Also, PRO users get 2$ inference credits per month!

Read more in the announcement ๐Ÿ‘‰ https://huggingface.co/blog/inference-providers
  • 1 reply
ยท
reacted to merve's post with ๐Ÿ”ฅ 18 days ago
view post
Post
5090
Oof, what a week! ๐Ÿฅต So many things have happened, let's recap! merve/jan-24-releases-6793d610774073328eac67a9

Multimodal ๐Ÿ’ฌ
- We have released SmolVLM -- tiniest VLMs that come in 256M and 500M, with it's retrieval models ColSmol for multimodal RAG ๐Ÿ’—
- UI-TARS are new models by ByteDance to unlock agentic GUI control ๐Ÿคฏ in 2B, 7B and 72B
- Alibaba DAMO lab released VideoLlama3, new video LMs that come in 2B and 7B
- MiniMaxAI released Minimax-VL-01, where decoder is based on MiniMax-Text-01 456B MoE model with long context
- Dataset: Yale released a new benchmark called MMVU
- Dataset: CAIS released Humanity's Last Exam (HLE) a new challenging MM benchmark

LLMs ๐Ÿ“–
- DeepSeek-R1 & DeepSeek-R1-Zero: gigantic 660B reasoning models by DeepSeek, and six distilled dense models, on par with o1 with MIT license! ๐Ÿคฏ
- Qwen2.5-Math-PRM: new math models by Qwen in 7B and 72B
- NVIDIA released AceMath and AceInstruct, new family of models and their datasets (SFT and reward ones too!)

Audio ๐Ÿ—ฃ๏ธ
- Llasa is a new speech synthesis model based on Llama that comes in 1B,3B, and 8B
- TangoFlux is a new audio generation model trained from scratch and aligned with CRPO

Image/Video/3D Generation โฏ๏ธ
- Flex.1-alpha is a new 8B pre-trained diffusion model by ostris similar to Flux
- tencent released Hunyuan3D-2, new 3D asset generation from images
ยท
posted an update 18 days ago
view post
Post
3103
Today we make the biggest release in smolagents so far: ๐˜„๐—ฒ ๐—ฒ๐—ป๐—ฎ๐—ฏ๐—น๐—ฒ ๐˜ƒ๐—ถ๐˜€๐—ถ๐—ผ๐—ป ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€, ๐˜„๐—ต๐—ถ๐—ฐ๐—ต ๐—ฎ๐—น๐—น๐—ผ๐˜„๐˜€ ๐˜๐—ผ ๐—ฏ๐˜‚๐—ถ๐—น๐—ฑ ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ๐—ณ๐˜‚๐—น ๐˜„๐—ฒ๐—ฏ ๐—ฏ๐—ฟ๐—ผ๐˜„๐˜€๐—ถ๐—ป๐—ด ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€! ๐Ÿฅณ

Our agents can now casually open up a web browser, and navigate on it by scrolling, clicking elements on the webpage, going back, just like a user would.

The demo below shows Claude-3.5-Sonnet browsing GitHub for task: "Find how many commits the author of the current top trending repo did over last year."
Hi @mlabonne !

Go try it out, it's the most cracked agentic stuff I've seen in a while ๐Ÿคฏ (well, along with OpenAI's Operator who beat us by one day)

For more detail, read our announcement blog ๐Ÿ‘‰ https://huggingface.co/blog/smolagents-can-see
The code for the web browser example is here ๐Ÿ‘‰ https://github.com/huggingface/smolagents/blob/main/examples/vlm_web_browser.py
ยท
reacted to florentgbelidji's post with ๐Ÿ”ฅ 25 days ago
view post
Post
1452
๐—ฃ๐—น๐—ฎ๐—ป๐—ป๐—ถ๐—ป๐—ด ๐—ฌ๐—ผ๐˜‚๐—ฟ ๐—ก๐—ฒ๐˜…๐˜ ๐—ฆ๐—ธ๐—ถ ๐—”๐—ฑ๐˜ƒ๐—ฒ๐—ป๐˜๐˜‚๐—ฟ๐—ฒ ๐—๐˜‚๐˜€๐˜ ๐—š๐—ผ๐˜ ๐—ฆ๐—บ๐—ฎ๐—ฟ๐˜๐—ฒ๐—ฟ: ๐—œ๐—ป๐˜๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐—ถ๐—ป๐—ด ๐—”๐—น๐—ฝ๐—ถ๐—ป๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜!๐Ÿ”๏ธโ›ท๏ธ

With the big hype around AI agents these days, I couldnโ€™t stop thinking about how AI agents could truly enhance real-world activities.
What sort of applications could we build with those AI agents: agentic RAG? self-correcting text-to-sql? Nah, boringโ€ฆ

Passionate about outdoors, Iโ€™ve always dreamed of a tool that could simplify planning mountain trips while accounting for all potential risks. Thatโ€™s why I built ๐—”๐—น๐—ฝ๐—ถ๐—ป๐—ฒ ๐—”๐—ด๐—ฒ๐—ป๐˜, a smart assistant designed to help you plan safe and enjoyable itineraries in the French Alps and Pyrenees.

Built using Hugging Face's ๐˜€๐—บ๐—ผ๐—น๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ library, Alpine Agent combines the power of AI with trusted resources like ๐˜š๐˜ฌ๐˜ช๐˜ต๐˜ฐ๐˜ถ๐˜ณ.๐˜ง๐˜ณ (https://skitour.fr/) and METEO FRANCE. Whether itโ€™s suggesting a route with moderate difficulty or analyzing avalanche risks and weather conditions, this agent dynamically integrates data to deliver personalized recommendations.

In my latest blog post, I share how I developed this projectโ€”from defining tools and integrating APIs to selecting the best LLMs like ๐˜˜๐˜ธ๐˜ฆ๐˜ฏ2.5-๐˜Š๐˜ฐ๐˜ฅ๐˜ฆ๐˜ณ-32๐˜‰-๐˜๐˜ฏ๐˜ด๐˜ต๐˜ณ๐˜ถ๐˜ค๐˜ต, ๐˜“๐˜ญ๐˜ข๐˜ฎ๐˜ข-3.3-70๐˜‰-๐˜๐˜ฏ๐˜ด๐˜ต๐˜ณ๐˜ถ๐˜ค๐˜ต, or ๐˜Ž๐˜—๐˜›-4.

โ›ท๏ธ Curious how AI can enhance adventure planning?โ€จTry the app and share your thoughts: florentgbelidji/alpine-agent

๐Ÿ‘‰ Want to build your own agents? Whether for cooking, sports training, or other passions, the possibilities are endless. Check out the blog post to learn more: https://huggingface.co/blog/florentgbelidji/alpine-agent

Many thanks to @m-ric for helping on building this tool with smolagents!
  • 1 reply
ยท
posted an update 26 days ago
view post
Post
1339
๐— ๐—ถ๐—ป๐—ถ๐— ๐—ฎ๐˜…'๐˜€ ๐—ป๐—ฒ๐˜„ ๐— ๐—ผ๐—˜ ๐—Ÿ๐—Ÿ๐—  ๐—ฟ๐—ฒ๐—ฎ๐—ฐ๐—ต๐—ฒ๐˜€ ๐—–๐—น๐—ฎ๐˜‚๐—ฑ๐—ฒ-๐—ฆ๐—ผ๐—ป๐—ป๐—ฒ๐˜ ๐—น๐—ฒ๐˜ƒ๐—ฒ๐—น ๐˜„๐—ถ๐˜๐—ต ๐Ÿฐ๐—  ๐˜๐—ผ๐—ธ๐—ฒ๐—ป๐˜€ ๐—ฐ๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—น๐—ฒ๐—ป๐—ด๐˜๐—ต ๐Ÿ’ฅ

This work from Chinese startup @MiniMax-AI introduces a novel architecture that achieves state-of-the-art performance while handling context windows up to 4 million tokens - roughly 20x longer than current models. The key was combining lightning attention, mixture of experts (MoE), and a careful hybrid approach.

๐—ž๐—ฒ๐˜† ๐—ถ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€:

๐Ÿ—๏ธ MoE with novel hybrid attention:
โ€ฃ Mixture of Experts with 456B total parameters (45.9B activated per token)
โ€ฃ Combines Lightning attention (linear complexity) for most layers and traditional softmax attention every 8 layers

๐Ÿ† Outperforms leading models across benchmarks while offering vastly longer context:
โ€ฃ Competitive with GPT-4/Claude-3.5-Sonnet on most tasks
โ€ฃ Can efficiently handle 4M token contexts (vs 256K for most other LLMs)

๐Ÿ”ฌ Technical innovations enable efficient scaling:
โ€ฃ Novel expert parallel and tensor parallel strategies cut communication overhead in half
โ€ฃ Improved linear attention sequence parallelism, multi-level padding and other optimizations achieve 75% GPU utilization (that's really high, generally utilization is around 50%)

๐ŸŽฏ Thorough training strategy:
โ€ฃ Careful data curation and quality control by using a smaller preliminary version of their LLM as a judge!

Overall, not only is the model impressive, but the technical paper is also really interesting! ๐Ÿ“
It has lots of insights including a great comparison showing how a 2B MoE (24B total) far outperforms a 7B model for the same amount of FLOPs.

Read it in full here ๐Ÿ‘‰ MiniMax-01: Scaling Foundation Models with Lightning Attention (2501.08313)
Model here, allows commercial use <100M monthly users ๐Ÿ‘‰ MiniMaxAI/MiniMax-Text-01
posted an update 27 days ago
view post
Post
2511
๐—ช๐—ฒ'๐˜ƒ๐—ฒ ๐—ท๐˜‚๐˜€๐˜ ๐—ฟ๐—ฒ๐—น๐—ฒ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐˜€๐—บ๐—ผ๐—น๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐˜ƒ๐Ÿญ.๐Ÿฏ.๐Ÿฌ ๐Ÿš€, and it comes with a major feature: you can now log agent runs using OpenTelemetry to inspect them afterwards! ๐Ÿ“Š

This interactive format is IMO much easier to inspect big multi-step runs than endless console logs.

The setup is very easy, in a few lines of code.

Find a tutorial here ๐Ÿ‘‰ https://huggingface.co/docs/smolagents/tutorials/inspect_runs
  • 5 replies
ยท
posted an update about 1 month ago
view post
Post
658
๐—ข๐—ฆ-๐—š๐—ฒ๐—ป๐—ฒ๐˜€๐—ถ๐˜€: ๐—ป๐—ฒ๐˜„ ๐—ฟ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—ฝ๐—ฎ๐—ฝ๐—ฒ๐—ฟ ๐—ฝ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ฒ๐˜€ ๐—ฎ ๐—ป๐—ผ๐˜ƒ๐—ฒ๐—น ๐˜๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ด๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—บ๐—ฒ๐˜๐—ต๐—ผ๐—ฑ ๐—ณ๐—ผ๐—ฟ ๐—–๐—น๐—ฎ๐˜‚๐—ฑ๐—ฒ-๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ๐—ฟ-๐—จ๐˜€๐—ฒ-๐—น๐—ถ๐—ธ๐—ฒ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€, ๐˜„๐—ถ๐˜๐—ต ๐—ถ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฟ๐—ฒ๐˜€๐˜‚๐—น๐˜๐˜€! ๐Ÿ”ฅ

The main bottleneck in building GUI agents it to find training data.
GUI Agent trajectories are not easy to get by. Crowdsourcing trajectories, then manually annotating them, could be an option, but at scale, it's hard to do

You could use synthetic data generation (ask 1000s small existing GUI agents to solve tasks, keep only successful runs). But then it's hard to come up with many high level-tasks.

โžก๏ธ Well, a novel technique was just published that creates a new promising paradigm for synthetic data generation: Shanghai AI Lab researchers propose OS-Genesis, a novel way to create training data for GUI agents that flips the traditional approach on its head. Instead of starting with predefined tasks and having humans or machines execute them, OS-Genesis first explores the interface naturally, then derives meaningful tasks from those interactions.

๐Ÿ” Exploration-driven vs task-driven approach:
โ€ฃ Instead of starting with tasks, OS-Genesis first explores GUIs by clicking and interacting
โ€ฃ It then reverse-engineers high-level tasks from successful interaction patterns
โ€ฃ This leads to more natural and diverse training data than predefined tasks

๐ŸŽฏ Novel reward model for trajectory quality:
โ€ฃ Rather than discarding incomplete trajectories, OS-Genesis scores them based on coherence and completion
โ€ฃ This preserves valuable partial successes that would otherwise be wasted

๐Ÿ† Superior results across environments:
โ€ฃ Nearly doubles performance on AndroidWorld (9.8% โ†’ 17.4%)

By the way, this field of GUI agents is still in infancy, so you can still make a difference with "low-cost" setups: their paper gets SOTA results with only 8xA100!

Read the paper here ๐Ÿ‘‰ OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis (2412.19723)
posted an update about 1 month ago
view post
Post
5107
Since I published it on GitHub a few days ago,
Hugging Face's new agentic library ๐˜€๐—บ๐—ผ๐—น๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ has gathered nearly 4k stars ๐Ÿคฏ

โžก๏ธ But we are just getting started on agents: so we are hiring an ML Engineer to join me and double down on this effort!

The plan is to build GUI agents: agents that can act on your computer with mouse & keyboard, like Claude Computer Use.

We will make it work better, and fully open. โœจ

Sounds like something you'd like to do? Apply here ๐Ÿ‘‰ https://apply.workable.com/huggingface/j/AF1D4E3FEB/
ยท
posted an update about 2 months ago
view post
Post
2372
After 6 years, BERT, the workhorse of encoder models, finally gets a replacement: ๐—ช๐—ฒ๐—น๐—ฐ๐—ผ๐—บ๐—ฒ ๐— ๐—ผ๐—ฑ๐—ฒ๐—ฟ๐—ป๐—•๐—˜๐—ฅ๐—ง! ๐Ÿค—

We talk a lot about โœจGenerative AIโœจ, meaning "Decoder version of the Transformers architecture", but this is only one of the ways to build LLMs: encoder models, that turn a sentence in a vector, are maybe even more widely used in industry than generative models.

The workhorse for this category has been BERT since its release in 2018 (that's prehistory for LLMs).

It's not a fancy 100B parameters supermodel (just a few hundred millions), but it's an excellent workhorse, kind of a Honda Civic for LLMs.

Many applications use BERT-family models - the top models in this category cumulate millions of downloads on the Hub.

โžก๏ธ Now a collaboration between Answer.AI and LightOn just introduced BERT's replacement: ModernBERT.

๐—ง๐—Ÿ;๐——๐—ฅ:
๐Ÿ›๏ธ Architecture changes:
โ‡’ First, standard modernizations:
- Rotary positional embeddings (RoPE)
- Replace GeLU with GeGLU,
- Use Flash Attention 2
โœจ The team also introduced innovative techniques like alternating attention instead of full attention, and sequence packing to get rid of padding overhead.

๐Ÿฅ‡ As a result, the model tops the game of encoder models:
It beats previous standard DeBERTaV3 for 1/5th the memory footprint, and runs 4x faster!

Read the blog post ๐Ÿ‘‰ https://huggingface.co/blog/modernbert
  • 1 reply
ยท
posted an update about 2 months ago
view post
Post
2534
๐‡๐ฎ๐ ๐ ๐ข๐ง๐  ๐…๐š๐œ๐ž ๐ซ๐ž๐ฅ๐ž๐š๐ฌ๐ž๐ฌ ๐๐ข๐œ๐จ๐ญ๐ซ๐จ๐ง, ๐š ๐ฆ๐ข๐œ๐ซ๐จ๐ฌ๐œ๐จ๐ฉ๐ข๐œ ๐ฅ๐ข๐› ๐ญ๐ก๐š๐ญ ๐ฌ๐จ๐ฅ๐ฏ๐ž๐ฌ ๐‹๐‹๐Œ ๐ญ๐ซ๐š๐ข๐ง๐ข๐ง๐  ๐Ÿ’๐ƒ ๐ฉ๐š๐ซ๐š๐ฅ๐ฅ๐ž๐ฅ๐ข๐ณ๐š๐ญ๐ข๐จ๐ง ๐Ÿฅณ

๐Ÿ•ฐ๏ธ Llama-3.1-405B took 39 million GPU-hours to train, i.e. about 4.5 thousand years.

๐Ÿ‘ด๐Ÿป If they had needed all this time, we would have GPU stories from the time of Pharaoh ๐“‚€: "Alas, Lord of Two Lands, the shipment of counting-stones arriving from Cathay was lost to pirates, this shall delay the building of your computing temple by many moons "

๐Ÿ› ๏ธ But instead, they just parallelized the training on 24k H100s, which made it take just a few months.
This required parallelizing across 4 dimensions: data, tensor, context, pipeline.
And it is infamously hard to do, making for bloated code repos that hold together only by magic.

๐Ÿค ๐—•๐˜‚๐˜ ๐—ป๐—ผ๐˜„ ๐˜„๐—ฒ ๐—ฑ๐—ผ๐—ป'๐˜ ๐—ป๐—ฒ๐—ฒ๐—ฑ ๐—ต๐˜‚๐—ด๐—ฒ ๐—ฟ๐—ฒ๐—ฝ๐—ผ๐˜€ ๐—ฎ๐—ป๐˜†๐—บ๐—ผ๐—ฟ๐—ฒ! Instead of building mega-training codes, Hugging Face colleagues cooked in the other direction, towards tiny 4D parallelism libs. A team has built Nanotron, already widely used in industry.
And now a team releases Picotron, a radical approach to code 4D Parallelism in just a few hundred lines of code, a real engineering prowess, making it much easier to understand what's actually happening!

โšก ๐—œ๐˜'๐˜€ ๐˜๐—ถ๐—ป๐˜†, ๐˜†๐—ฒ๐˜ ๐—ฝ๐—ผ๐˜„๐—ฒ๐—ฟ๐—ณ๐˜‚๐—น:
Counting in MFU (Model FLOPs Utilization, how much the model actually uses all the compute potential), this lib reaches ~50% on SmolLM-1.7B model with 8 H100 GPUs, which is really close to what huge libs would reach. (Caution: the team is leading further benchmarks to verify this)

Go take a look ๐Ÿ‘‰ https://github.com/huggingface/picotron/tree/main/picotron
  • 1 reply
ยท
posted an update about 2 months ago
view post
Post
2254
๐—ฃ๐—ผ๐˜๐—ฒ๐—ป๐˜๐—ถ๐—ฎ๐—น ๐—ฝ๐—ฎ๐—ฟ๐—ฎ๐—ฑ๐—ถ๐—ด๐—บ ๐˜€๐—ต๐—ถ๐—ณ๐˜ ๐—ถ๐—ป ๐—Ÿ๐—Ÿ๐— ๐˜€: ๐—ป๐—ฒ๐˜„ ๐—ฝ๐—ฎ๐—ฝ๐—ฒ๐—ฟ ๐—ฏ๐˜† ๐— ๐—ฒ๐˜๐—ฎ ๐—ฐ๐—น๐—ฎ๐—ถ๐—บ๐˜€ ๐˜๐—ต๐—ฎ๐˜ ๐˜„๐—ฒ ๐—ฐ๐—ฎ๐—ป ๐—ด๐—ฒ๐˜ ๐—ฟ๐—ถ๐—ฑ ๐—ผ๐—ณ ๐˜๐—ผ๐—ธ๐—ฒ๐—ป๐—ถ๐˜‡๐—ฒ๐—ฟ๐˜€! ๐Ÿฅณ

Current LLMs process text by first splitting it into tokens. They use a module named "tokenizer", that -spl-it-s- th-e- te-xt- in-to- arbitrary tokens depending on a fixed dictionnary.
On the Hub you can find this dictionary in a model's files under tokenizer.json.

โžก๏ธ This process is called BPE tokenization. It is suboptimal, everyone says it. It breaks text into predefined chunks that often fail to capture the nuance of language. But it has been a necessary evil in language models since their inception.

๐Ÿ’ฅ In Byte Latent Transformer (BLT), Meta researchers propose an elegant solution by eliminating tokenization entirely, working directly with raw bytes while maintaining efficiency through dynamic "patches."

This had been tried before with different byte-level tokenizations, but it's the first time that an architecture of this type scales as well as BPE tokenization. And it could mean a real paradigm shift! ๐Ÿ‘๐Ÿ‘

๐Ÿ—๏ธ ๐—”๐—ฟ๐—ฐ๐—ต๐—ถ๐˜๐—ฒ๐—ฐ๐˜๐˜‚๐—ฟ๐—ฒ:
Instead of a lightweight tokenizer, BLT has a lightweight encoder that process raw bytes into patches. Then the patches are processed by the main heavy-duty transformers as we do normally (but for patches of bytes instead of tokens), before converting back to bytes.

๐Ÿงฉ ๐——๐˜†๐—ป๐—ฎ๐—บ๐—ถ๐—ฐ ๐—ฃ๐—ฎ๐˜๐—ฐ๐—ต๐—ถ๐—ป๐—ด:
Instead of fixed tokens, BLT groups bytes based on their predictability (measured by entropy) - using more compute for complex sequences and efficiently handling simple ones. This allows efficient processing while maintaining byte-level understanding.

I hope this breakthrough is confirmed and we can get rid of all the tokenizer stuff, it will make model handling easier!

Read their paper here ๐Ÿ‘‰ https://dl.fbaipublicfiles.com/blt/BLT__Patches_Scale_Better_Than_Tokens.pdf
  • 2 replies
ยท
posted an update 2 months ago
view post
Post
2819
๐Ÿ’ฅ ๐—š๐—ผ๐—ผ๐—ด๐—น๐—ฒ ๐—ฟ๐—ฒ๐—น๐—ฒ๐—ฎ๐˜€๐—ฒ๐˜€ ๐—š๐—ฒ๐—บ๐—ถ๐—ป๐—ถ ๐Ÿฎ.๐Ÿฌ, ๐˜€๐˜๐—ฎ๐—ฟ๐˜๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐—ฎ ๐—™๐—น๐—ฎ๐˜€๐—ต ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น ๐˜๐—ต๐—ฎ๐˜ ๐˜€๐˜๐—ฒ๐—ฎ๐—บ๐—ฟ๐—ผ๐—น๐—น๐˜€ ๐—š๐—ฃ๐—ง-๐Ÿฐ๐—ผ ๐—ฎ๐—ป๐—ฑ ๐—–๐—น๐—ฎ๐˜‚๐—ฑ๐—ฒ-๐Ÿฏ.๐Ÿฒ ๐—ฆ๐—ผ๐—ป๐—ป๐—ฒ๐˜! And they start a huge effort on agentic capabilities.

๐Ÿš€ The performance improvements are crazy for such a fast model:
โ€ฃ Gemini 2.0 Flash outperforms the previous 1.5 Pro model at twice the speed
โ€ฃ Now supports both input AND output of images, video, audio and text
โ€ฃ Can natively use tools like Google Search and execute code

โžก๏ธ If the price is on par with previous Flash iteration ($0.30 / M tokens, to compare with GPT-4o's $1.25) the competition will have a big problem with this 4x cheaper model that gets better benchmarks ๐Ÿคฏ

๐Ÿค– What about the agentic capabilities?

โ€ฃ Project Astra: A universal AI assistant that can use Google Search, Lens and Maps
โ€ฃ Project Mariner: A Chrome extension that can complete complex web tasks (83.5% success rate on WebVoyager benchmark, this is really impressive!)
โ€ฃ Jules: An AI coding agent that integrates with GitHub workflows

I'll be eagerly awaiting further news from Google!

Read their blogpost here ๐Ÿ‘‰ https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
posted an update 2 months ago
view post
Post
1846
๐’๐œ๐š๐ฅ๐ข๐ง๐  ๐ฅ๐š๐ฐ๐ฌ ๐š๐ซ๐ž ๐ง๐จ๐ญ ๐๐ž๐š๐ ๐ฒ๐ž๐ญ! New blog post suggests Anthropic might have an extremely strong Opus-3.5 already available, but is not releasing it to keep their edge over the competition. ๐Ÿง

โ“Since the release of Opus-3.5 has been delayed indefinitely, there have been lots of rumors and articles about LLMs plateauing. Scaling laws, the main powering factor of the LLM competence increase, could have stopped, according to these rumors, being the cause of this stalling of progress.

These rumors were quickly denied by many people at the leading LLM labs, including OpenAI and Anthropic. But these people would be expected to hype the future of LLMs even if scaling laws really plateaued, so the jury is still out.

๐Ÿ—ž๏ธ This new article by Semianalysis (generally a good source, specifically on hardware) provides a counter-rumor that I find more convincing:

โžก๏ธ Maybe scaling laws still work, Opus-3.5 is ready and as good as planned, but they just don't release it because the synthetic data it helps provide can bring cheaper/smaller models Claude and Haiku up in performance, without risking to leak this precious high-quality synthetic data to competitors.

Time will tell! I feel like we'll know more soon.

Read the article: https://semianalysis.com/2024/12/11/scaling-laws-o1-pro-architecture-reasoning-infrastructure-orion-and-claude-3-5-opus-failures/
  • 1 reply
ยท
reacted to julien-c's post with โค๏ธ๐Ÿ”ฅ 2 months ago
view post
Post
9453
After some heated discussion ๐Ÿ”ฅ, we clarify our intent re. storage limits on the Hub

TL;DR:
- public storage is free, and (unless blatant abuse) unlimited. We do ask that you consider upgrading to PRO and/or Enterprise Hub if possible
- private storage is paid above a significant free tier (1TB if you have a paid account, 100GB otherwise)

docs: https://huggingface.co/docs/hub/storage-limits

We optimize our infrastructure continuously to scale our storage for the coming years of growth in Machine learning, to the benefit of the community ๐Ÿ”ฅ

cc: @reach-vb @pierric @victor and the HF team
ยท
posted an update 2 months ago
view post
Post
2261
Last week was crazy in OS AI, with important models and datasets releases every day.

Here are the most important ones I've pinned:

๐ŸŒŽ Cohere relased GLobal-MMLU, a multilingual version of MMLU, to evaluate AI models' world knowledge in many languages!

๐Ÿฆ™ Meta released Llama-3.3-70B-Instruct, a 70B model that's on par with Llama-3.1-405B-Instruct, GPT-4o and Claude. Probably my new go-to for agentic workflows.

๐Ÿ”‰ FishAudio released fish-speech-1.5, multilingual text to speech model

๐ŸŽจ Microsoft Research released TRELLIS, an extremely impressive image-to-3D model, which you can try here: JeffreyXiang/TRELLIS

๐Ÿ“š Yesterday, Hugging Face release FineWeb 2, a new version that extends the previous FineWeb to over 1000 languages, including extended coverage in Russina, Mandarin, German, Japanese, Spanish, French, so a huge, high-quality dataset of > 3 trillion words! HuggingFaceFW/fineweb-2

Now let's go build to make this week as productive as last one!