doberst commited on
Commit
97e0ec4
·
verified ·
1 Parent(s): 3a6e0c0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -4,13 +4,13 @@ inference: false
4
  tags: [green, p1, llmware-fx,ov]
5
  ---
6
 
7
- # slim-sentiment-ov
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
- **slim-sentiment-ov** is an OpenVino int4 quantized version of slim sentiment 1B, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
- [**slim-sentiment**](https://huggingface.co/llmware/slim-sentiment) is a function-calling specialized model finetuned to evaluate sentiment and return a python dictionary with a sentiment key and the classification value, e.g., "positive", "negative", or "neutral".
14
 
15
  Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
16
 
@@ -22,10 +22,10 @@ Looking for AI PC solutions and demos, contact us at [llmware](https://www.llmwa
22
  - **Developed by:** llmware
23
  - **Model type:** tinyllama
24
  - **Parameters:** 1.1 billion
25
- - **Model Parent:** llmware/slim-sentiment
26
  - **Language(s) (NLP):** English
27
  - **License:** Apache 2.0
28
- - **Uses:** Sentiment classification
29
  - **RAG Benchmark Accuracy Score:** NA
30
  - **Quantization:** int4
31
 
 
4
  tags: [green, p1, llmware-fx,ov]
5
  ---
6
 
7
+ # slim-emotions-ov
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
+ **slim-emotions-ov** is an OpenVino int4 quantized version of slim emotions 1B, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
+ [**slim-emotions**](https://huggingface.co/llmware/slim-emotions) is a function-calling specialized model finetuned to evaluate emotions and return a python dictionary with an emotions key and the classification value.
14
 
15
  Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
16
 
 
22
  - **Developed by:** llmware
23
  - **Model type:** tinyllama
24
  - **Parameters:** 1.1 billion
25
+ - **Model Parent:** llmware/slim-emotions
26
  - **Language(s) (NLP):** English
27
  - **License:** Apache 2.0
28
+ - **Uses:** Emotions classification
29
  - **RAG Benchmark Accuracy Score:** NA
30
  - **Quantization:** int4
31