File size: 10,034 Bytes
25f71fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/opt/software/install/miniconda38/bin/python
import argparse
parser = argparse.ArgumentParser(description='DECIDIA training program')
parser.add_argument('--input_dir', type=str, help='input directory')
parser.add_argument('--sequence_embedding', type=str, help='sequence embedding directory')
parser.add_argument('--num_hidden_layers', type=int, default=1, help='num_hidden_layers [1]')
parser.add_argument('--train_file', type=str, help='training file')
parser.add_argument('--val_file', type=str, help='validation file')
parser.add_argument('--device', type=str, help='device', default='cuda:1')
parser.add_argument('--num_classes', type=int, help='num_classes [32]', default=32)
parser.add_argument('--diseases', type=str, default=None, help='diseases included, e.g "LUAD,LUSC"')
parser.add_argument('--weight_decay', type=float, help='weight_decay [1e-5]', default=1e-5)
parser.add_argument('--modeling_context', action='store_true', help='whether use OPT to model context dependency')
parser.add_argument("--lr_scheduler_type", type=str,
                    choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
                    default="constant", help="The scheduler type to use.")
parser.add_argument('--pretrained_weight', type=str, help='pretrained weight')
parser.add_argument('--pretrained_cls_token', type=str, help='pretrained cls token')
parser.add_argument('--epochs', type=int, default=100, help='epochs (default: 100)')
parser.add_argument('--num_sequences', type=int, default=None, help='num of sequences to sample from training set')
parser.add_argument('--num_train_patients', type=int, default=None, help='num of patients data to sample from training set')

args = parser.parse_args()

import os
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
import sys
import glob
import torch
import torch.nn as nn
from tqdm import tqdm
from torch.optim import AdamW, Adam, SGD, Adagrad
from sklearn.utils import resample
from transformers import get_scheduler
import numpy as np
import pandas as pd
import random
import time
from transformers import (
    PreTrainedTokenizerFast, 
    OPTForCausalLM
)
from model import DeepAttnMIL

torch.set_num_threads(2)
device = args.device
random.seed(123)

tokenizer = PreTrainedTokenizerFast.from_pretrained(args.sequence_embedding)
net = OPTForCausalLM.from_pretrained(args.sequence_embedding)
net = net.to(device)
net.eval()

feature_dim = net.config.hidden_size

trn_df = pd.read_csv(f'{args.input_dir}/trn.csv.gz')
reads_per_patient = trn_df.patient.value_counts().unique()
assert len(reads_per_patient) == 1
reads_per_patient = reads_per_patient[0]
if args.num_sequences < reads_per_patient:
    trn_df = pd.concat([df.sample(args.num_sequences, random_state=123) for patient, df in trn_df.groupby('patient')])

num_train_samples = len(trn_df.patient.unique())
if args.num_train_patients is None:
    args.num_train_patients = num_train_samples
if args.num_train_patients < num_train_samples:
    trn_df = trn_df[trn_df.patient.isin(random.sample(trn_df.patient.unique().tolist(), args.num_train_patients))]
    
trn_x = torch.zeros(args.num_train_patients, args.num_sequences, feature_dim)
trn_y = torch.as_tensor([-1] * args.num_train_patients)

test_df = pd.read_csv(f'{args.input_dir}/test.csv.gz')
num_test_samples = len(test_df.patient.unique())
test_x = torch.zeros(num_test_samples, reads_per_patient, feature_dim)
test_y = torch.as_tensor([-1] * num_test_samples)
test_patients = []

val_df = pd.read_csv(f'{args.input_dir}/val.csv.gz')
num_val_samples = len(val_df.patient.unique())
val_x = torch.zeros(num_val_samples, reads_per_patient, feature_dim)
val_y = torch.as_tensor([-1] * num_val_samples)
val_patients = []


pad_token_id = net.config.pad_token_id


for i, (patient, e) in tqdm(enumerate(trn_df.groupby('patient')), total=args.num_train_patients):
    a = [' '.join(list(s)) for s in e.seq]
    inputs = tokenizer(a, max_length=100, padding='max_length', truncation=True, return_tensors='pt', return_token_type_ids=False)
    for k, v in inputs.items():inputs[k] = v.to(device)
    with torch.inference_mode():
        out = net.model(**inputs)
    features = out.last_hidden_state.mean(1).cpu()
    trn_x[i] = features
    trn_y[i] = e.label.tolist()[0]


for i, (patient, e) in tqdm(enumerate(test_df.groupby('patient')), total=num_test_samples):
    a = [' '.join(list(s)) for s in e.seq]
    inputs = tokenizer(a, max_length=100, padding='max_length', truncation=True, return_tensors='pt', return_token_type_ids=False)
    for k, v in inputs.items():inputs[k] = v.to(device)
    with torch.inference_mode():
        out = net.model(**inputs)
    features = out.last_hidden_state.mean(1).cpu()
    test_x[i] = features
    test_y[i] = e.label.tolist()[0]
    test_patients.append(patient)

for i, (patient, e) in tqdm(enumerate(val_df.groupby('patient')), total=num_val_samples):
    a = [' '.join(list(s)) for s in e.seq]
    inputs = tokenizer(a, max_length=100, padding='max_length', truncation=True, return_tensors='pt', return_token_type_ids=False)
    for k, v in inputs.items():inputs[k] = v.to(device)
    with torch.inference_mode():
        out = net.model(**inputs)
    features = out.last_hidden_state.mean(1).cpu()
    val_x[i] = features
    val_y[i] = e.label.tolist()[0]
    val_patients.append(patient)



fout = open(f'{args.input_dir}/log-reads-{args.num_sequences}-patients-trn{args.num_train_patients}-val{num_val_samples}-test{num_test_samples}-tiny.txt', 'w')
print("epoch\ttrain_loss\ttrain_acc\tval_loss\tval_acc\teval_loss\teval_acc", file=fout)

model = DeepAttnMIL(input_dim=feature_dim, n_classes=args.num_classes, size_arg='big')


if args.pretrained_weight:
    state_dict = torch.load(args.pretrained_weight, map_location='cpu')
    if state_dict['classifier.weight'].size(0) != args.num_classes:
        del state_dict['classifier.weight']
        del state_dict['classifier.bias']

    msg = model.load_state_dict(state_dict, strict=False)
    print(msg)#, file=fout)

model = model.to(device)

print(model)#, file=fout)


criterion = nn.CrossEntropyLoss()

no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
    {
        "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
        "weight_decay": 1e-5,
    },
    {
        "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
        "weight_decay": 0.0,
    },
]
opt = AdamW(optimizer_grouped_parameters, lr=2e-5)


num_update_steps_per_epoch = len(trn_df)
max_train_steps = args.epochs * num_update_steps_per_epoch
lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=opt, num_warmup_steps=num_update_steps_per_epoch*1, num_training_steps=max_train_steps)


best_eval_acc = 0.0
best_eval_loss = 100000.0
best_val_loss = 100000.0
for epoch in range(args.epochs):
    model.train()
    total_loss, total_batch, total_num, correct_k = 0, 0, 0, 0
    idxs = random.sample(range(len(trn_y)), len(trn_y))
    for idx in idxs:
        x = trn_x[idx]
        y = trn_y[idx].unsqueeze(0)
        x = x.to(device)
        y = y.to(device)

        logit = model(x)
        loss = criterion(logit, y) 

        opt.zero_grad()
        loss.backward()
        opt.step()
        lr_scheduler.step()

        total_loss += loss.item()
        total_batch += 1
        total_num += len(y)
        correct_k += logit.argmax(1).eq(y).sum()

    train_acc = correct_k / total_num
    train_loss = total_loss / total_batch

    #######Evalutate on test set ################
    model.eval()
    total_loss, total_batch, total_num, correct_k = 0, 0, 0, 0
    eval_probs = []
    for x, y, pid in zip(test_x, test_y, test_patients):
        y = y.unsqueeze(0).to(device)
        x = x.to(device)

        with torch.inference_mode():
            logit = model(x)
        loss = criterion(logit, y) 

        eval_probs.append(logit.flatten().softmax(0).tolist())

        total_loss += loss.item()
        total_batch += 1
        total_num += len(y)
        correct_k += logit.argmax(1).eq(y).sum()

    eval_acc = correct_k / total_num
    eval_loss = total_loss / total_batch

    #######Evalutate on val set ################
    model.eval()
    total_loss, total_batch, total_num, correct_k = 0, 0, 0, 0
    val_probs = []
    for x, y, pid in zip(val_x, val_y, val_patients):
        y = y.unsqueeze(0).to(device)
        x = x.to(device)

        with torch.inference_mode():
            logit = model(x)
        loss = criterion(logit, y) 

        val_probs.append(logit.flatten().softmax(0).tolist())

        total_loss += loss.item()
        total_batch += 1
        total_num += len(y)
        correct_k += logit.argmax(1).eq(y).sum()

    val_acc = correct_k / total_num
    val_loss = total_loss / total_batch


    print(f"{epoch+1}\t{train_loss}\t{train_acc}\t{val_loss}\t{val_acc}\t{eval_loss}\t{eval_acc}", file=fout)
    fout.flush()

    if val_loss < best_val_loss:
        torch.save(model.state_dict(), f'{args.input_dir}/model-reads-{args.num_sequences}-patients-trn{args.num_train_patients}-val{num_val_samples}-test{num_test_samples}-tiny.pt')
        best_val_loss = val_loss

        eval_probs = pd.DataFrame(eval_probs, columns=['p_normal', 'p_cancer'])
        info = pd.DataFrame({'patient':test_patients, 'label':test_y.tolist()})
        info = pd.concat([info, eval_probs], axis=1)
        info.to_csv(f'{args.input_dir}/test_prediction-reads-{args.num_sequences}-patients-trn{args.num_train_patients}-val{num_val_samples}-test{num_test_samples}-tiny.csv', index=False)

        val_probs = pd.DataFrame(val_probs, columns=['p_normal', 'p_cancer'])
        info = pd.DataFrame({'patient':val_patients, 'label':val_y.tolist()})
        info = pd.concat([info, val_probs], axis=1)
        info.to_csv(f'{args.input_dir}/val_prediction-reads-{args.num_sequences}-patients-trn{args.num_train_patients}-val{num_val_samples}-test{num_test_samples}-tiny.csv', index=False)

fout.close()