File size: 10,034 Bytes
25f71fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
#!/opt/software/install/miniconda38/bin/python
import argparse
parser = argparse.ArgumentParser(description='DECIDIA training program')
parser.add_argument('--input_dir', type=str, help='input directory')
parser.add_argument('--sequence_embedding', type=str, help='sequence embedding directory')
parser.add_argument('--num_hidden_layers', type=int, default=1, help='num_hidden_layers [1]')
parser.add_argument('--train_file', type=str, help='training file')
parser.add_argument('--val_file', type=str, help='validation file')
parser.add_argument('--device', type=str, help='device', default='cuda:1')
parser.add_argument('--num_classes', type=int, help='num_classes [32]', default=32)
parser.add_argument('--diseases', type=str, default=None, help='diseases included, e.g "LUAD,LUSC"')
parser.add_argument('--weight_decay', type=float, help='weight_decay [1e-5]', default=1e-5)
parser.add_argument('--modeling_context', action='store_true', help='whether use OPT to model context dependency')
parser.add_argument("--lr_scheduler_type", type=str,
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
default="constant", help="The scheduler type to use.")
parser.add_argument('--pretrained_weight', type=str, help='pretrained weight')
parser.add_argument('--pretrained_cls_token', type=str, help='pretrained cls token')
parser.add_argument('--epochs', type=int, default=100, help='epochs (default: 100)')
parser.add_argument('--num_sequences', type=int, default=None, help='num of sequences to sample from training set')
parser.add_argument('--num_train_patients', type=int, default=None, help='num of patients data to sample from training set')
args = parser.parse_args()
import os
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
import sys
import glob
import torch
import torch.nn as nn
from tqdm import tqdm
from torch.optim import AdamW, Adam, SGD, Adagrad
from sklearn.utils import resample
from transformers import get_scheduler
import numpy as np
import pandas as pd
import random
import time
from transformers import (
PreTrainedTokenizerFast,
OPTForCausalLM
)
from model import DeepAttnMIL
torch.set_num_threads(2)
device = args.device
random.seed(123)
tokenizer = PreTrainedTokenizerFast.from_pretrained(args.sequence_embedding)
net = OPTForCausalLM.from_pretrained(args.sequence_embedding)
net = net.to(device)
net.eval()
feature_dim = net.config.hidden_size
trn_df = pd.read_csv(f'{args.input_dir}/trn.csv.gz')
reads_per_patient = trn_df.patient.value_counts().unique()
assert len(reads_per_patient) == 1
reads_per_patient = reads_per_patient[0]
if args.num_sequences < reads_per_patient:
trn_df = pd.concat([df.sample(args.num_sequences, random_state=123) for patient, df in trn_df.groupby('patient')])
num_train_samples = len(trn_df.patient.unique())
if args.num_train_patients is None:
args.num_train_patients = num_train_samples
if args.num_train_patients < num_train_samples:
trn_df = trn_df[trn_df.patient.isin(random.sample(trn_df.patient.unique().tolist(), args.num_train_patients))]
trn_x = torch.zeros(args.num_train_patients, args.num_sequences, feature_dim)
trn_y = torch.as_tensor([-1] * args.num_train_patients)
test_df = pd.read_csv(f'{args.input_dir}/test.csv.gz')
num_test_samples = len(test_df.patient.unique())
test_x = torch.zeros(num_test_samples, reads_per_patient, feature_dim)
test_y = torch.as_tensor([-1] * num_test_samples)
test_patients = []
val_df = pd.read_csv(f'{args.input_dir}/val.csv.gz')
num_val_samples = len(val_df.patient.unique())
val_x = torch.zeros(num_val_samples, reads_per_patient, feature_dim)
val_y = torch.as_tensor([-1] * num_val_samples)
val_patients = []
pad_token_id = net.config.pad_token_id
for i, (patient, e) in tqdm(enumerate(trn_df.groupby('patient')), total=args.num_train_patients):
a = [' '.join(list(s)) for s in e.seq]
inputs = tokenizer(a, max_length=100, padding='max_length', truncation=True, return_tensors='pt', return_token_type_ids=False)
for k, v in inputs.items():inputs[k] = v.to(device)
with torch.inference_mode():
out = net.model(**inputs)
features = out.last_hidden_state.mean(1).cpu()
trn_x[i] = features
trn_y[i] = e.label.tolist()[0]
for i, (patient, e) in tqdm(enumerate(test_df.groupby('patient')), total=num_test_samples):
a = [' '.join(list(s)) for s in e.seq]
inputs = tokenizer(a, max_length=100, padding='max_length', truncation=True, return_tensors='pt', return_token_type_ids=False)
for k, v in inputs.items():inputs[k] = v.to(device)
with torch.inference_mode():
out = net.model(**inputs)
features = out.last_hidden_state.mean(1).cpu()
test_x[i] = features
test_y[i] = e.label.tolist()[0]
test_patients.append(patient)
for i, (patient, e) in tqdm(enumerate(val_df.groupby('patient')), total=num_val_samples):
a = [' '.join(list(s)) for s in e.seq]
inputs = tokenizer(a, max_length=100, padding='max_length', truncation=True, return_tensors='pt', return_token_type_ids=False)
for k, v in inputs.items():inputs[k] = v.to(device)
with torch.inference_mode():
out = net.model(**inputs)
features = out.last_hidden_state.mean(1).cpu()
val_x[i] = features
val_y[i] = e.label.tolist()[0]
val_patients.append(patient)
fout = open(f'{args.input_dir}/log-reads-{args.num_sequences}-patients-trn{args.num_train_patients}-val{num_val_samples}-test{num_test_samples}-tiny.txt', 'w')
print("epoch\ttrain_loss\ttrain_acc\tval_loss\tval_acc\teval_loss\teval_acc", file=fout)
model = DeepAttnMIL(input_dim=feature_dim, n_classes=args.num_classes, size_arg='big')
if args.pretrained_weight:
state_dict = torch.load(args.pretrained_weight, map_location='cpu')
if state_dict['classifier.weight'].size(0) != args.num_classes:
del state_dict['classifier.weight']
del state_dict['classifier.bias']
msg = model.load_state_dict(state_dict, strict=False)
print(msg)#, file=fout)
model = model.to(device)
print(model)#, file=fout)
criterion = nn.CrossEntropyLoss()
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": 1e-5,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
opt = AdamW(optimizer_grouped_parameters, lr=2e-5)
num_update_steps_per_epoch = len(trn_df)
max_train_steps = args.epochs * num_update_steps_per_epoch
lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=opt, num_warmup_steps=num_update_steps_per_epoch*1, num_training_steps=max_train_steps)
best_eval_acc = 0.0
best_eval_loss = 100000.0
best_val_loss = 100000.0
for epoch in range(args.epochs):
model.train()
total_loss, total_batch, total_num, correct_k = 0, 0, 0, 0
idxs = random.sample(range(len(trn_y)), len(trn_y))
for idx in idxs:
x = trn_x[idx]
y = trn_y[idx].unsqueeze(0)
x = x.to(device)
y = y.to(device)
logit = model(x)
loss = criterion(logit, y)
opt.zero_grad()
loss.backward()
opt.step()
lr_scheduler.step()
total_loss += loss.item()
total_batch += 1
total_num += len(y)
correct_k += logit.argmax(1).eq(y).sum()
train_acc = correct_k / total_num
train_loss = total_loss / total_batch
#######Evalutate on test set ################
model.eval()
total_loss, total_batch, total_num, correct_k = 0, 0, 0, 0
eval_probs = []
for x, y, pid in zip(test_x, test_y, test_patients):
y = y.unsqueeze(0).to(device)
x = x.to(device)
with torch.inference_mode():
logit = model(x)
loss = criterion(logit, y)
eval_probs.append(logit.flatten().softmax(0).tolist())
total_loss += loss.item()
total_batch += 1
total_num += len(y)
correct_k += logit.argmax(1).eq(y).sum()
eval_acc = correct_k / total_num
eval_loss = total_loss / total_batch
#######Evalutate on val set ################
model.eval()
total_loss, total_batch, total_num, correct_k = 0, 0, 0, 0
val_probs = []
for x, y, pid in zip(val_x, val_y, val_patients):
y = y.unsqueeze(0).to(device)
x = x.to(device)
with torch.inference_mode():
logit = model(x)
loss = criterion(logit, y)
val_probs.append(logit.flatten().softmax(0).tolist())
total_loss += loss.item()
total_batch += 1
total_num += len(y)
correct_k += logit.argmax(1).eq(y).sum()
val_acc = correct_k / total_num
val_loss = total_loss / total_batch
print(f"{epoch+1}\t{train_loss}\t{train_acc}\t{val_loss}\t{val_acc}\t{eval_loss}\t{eval_acc}", file=fout)
fout.flush()
if val_loss < best_val_loss:
torch.save(model.state_dict(), f'{args.input_dir}/model-reads-{args.num_sequences}-patients-trn{args.num_train_patients}-val{num_val_samples}-test{num_test_samples}-tiny.pt')
best_val_loss = val_loss
eval_probs = pd.DataFrame(eval_probs, columns=['p_normal', 'p_cancer'])
info = pd.DataFrame({'patient':test_patients, 'label':test_y.tolist()})
info = pd.concat([info, eval_probs], axis=1)
info.to_csv(f'{args.input_dir}/test_prediction-reads-{args.num_sequences}-patients-trn{args.num_train_patients}-val{num_val_samples}-test{num_test_samples}-tiny.csv', index=False)
val_probs = pd.DataFrame(val_probs, columns=['p_normal', 'p_cancer'])
info = pd.DataFrame({'patient':val_patients, 'label':val_y.tolist()})
info = pd.concat([info, val_probs], axis=1)
info.to_csv(f'{args.input_dir}/val_prediction-reads-{args.num_sequences}-patients-trn{args.num_train_patients}-val{num_val_samples}-test{num_test_samples}-tiny.csv', index=False)
fout.close()
|