--- base_model: samrawal/bert-base-uncased_clinical-ner tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [samrawal/bert-base-uncased_clinical-ner](https://huggingface.co/samrawal/bert-base-uncased_clinical-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4144 - Precision: 0.5379 - Recall: 0.6266 - F1: 0.5789 - Accuracy: 0.8522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 188 | 0.4360 | 0.5166 | 0.5835 | 0.5480 | 0.8411 | | No log | 2.0 | 376 | 0.4066 | 0.5414 | 0.6322 | 0.5833 | 0.8521 | | 0.4136 | 3.0 | 564 | 0.4144 | 0.5379 | 0.6266 | 0.5789 | 0.8522 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.12.1 - Datasets 2.14.5 - Tokenizers 0.14.1