|
from typing import Optional, Tuple, Union |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.models.embeddings import get_fourier_embeds_from_boundingbox |
|
import torch |
|
import torch.nn as nn |
|
|
|
class AbsolutePositionalEmbedding(nn.Module): |
|
def __init__(self, dim, max_seq_len): |
|
super().__init__() |
|
self.emb = nn.Embedding(max_seq_len, dim) |
|
self.init_() |
|
|
|
def init_(self): |
|
nn.init.normal_(self.emb.weight, std=0.02) |
|
|
|
def forward(self, x): |
|
n = torch.arange(x.shape[1], device=x.device) |
|
return self.emb(n)[None, :, :] |
|
|
|
|
|
class InteractDiffusionInteractionProjection(nn.Module): |
|
def __init__(self, in_dim, out_dim, fourier_freqs=8): |
|
super().__init__() |
|
self.in_dim = in_dim |
|
self.out_dim = out_dim |
|
|
|
self.fourier_embedder_dim = fourier_freqs |
|
self.position_dim = fourier_freqs * 2 * 4 |
|
self.interaction_embedding = AbsolutePositionalEmbedding(dim=out_dim, max_seq_len=30) |
|
self.position_embedding = AbsolutePositionalEmbedding(dim=out_dim, max_seq_len=3) |
|
|
|
if isinstance(out_dim, tuple): |
|
out_dim = out_dim[0] |
|
|
|
self.linears = nn.Sequential( |
|
nn.Linear(self.in_dim + self.position_dim, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, out_dim), |
|
) |
|
|
|
self.linear_action = nn.Sequential( |
|
nn.Linear(self.in_dim + self.position_dim, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, out_dim), |
|
) |
|
|
|
self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.in_dim])) |
|
self.null_action_feature = torch.nn.Parameter(torch.zeros([self.in_dim])) |
|
self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) |
|
|
|
def get_between_box(self, bbox1, bbox2): |
|
""" Between Set Operation |
|
Operation of Box A between Box B from Prof. Jiang idea |
|
""" |
|
all_x = torch.cat([bbox1[:, :, 0::2], bbox2[:, :, 0::2]],dim=-1) |
|
all_y = torch.cat([bbox1[:, :, 1::2], bbox2[:, :, 1::2]],dim=-1) |
|
all_x, _ = all_x.sort() |
|
all_y, _ = all_y.sort() |
|
return torch.stack([all_x[:,:,1], all_y[:,:,1], all_x[:,:,2], all_y[:,:,2]],2) |
|
|
|
def forward( |
|
self, |
|
subject_boxes, object_boxes, |
|
masks, |
|
subject_positive_embeddings, object_positive_embeddings, action_positive_embeddings |
|
): |
|
masks = masks.unsqueeze(-1) |
|
|
|
|
|
action_boxes = self.get_between_box(subject_boxes, object_boxes) |
|
subject_xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, subject_boxes) |
|
object_xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, object_boxes) |
|
action_xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, action_boxes) |
|
|
|
|
|
positive_null = self.null_positive_feature.view(1, 1, -1) |
|
xyxy_null = self.null_position_feature.view(1, 1, -1) |
|
action_null = self.null_action_feature.view(1, 1, -1) |
|
|
|
|
|
subject_positive_embeddings = subject_positive_embeddings * masks + (1 - masks) * positive_null |
|
object_positive_embeddings = object_positive_embeddings * masks + (1 - masks) * positive_null |
|
|
|
subject_xyxy_embedding = subject_xyxy_embedding * masks + (1 - masks) * xyxy_null |
|
object_xyxy_embedding = object_xyxy_embedding * masks + (1 - masks) * xyxy_null |
|
action_xyxy_embedding = action_xyxy_embedding * masks + (1 - masks) * xyxy_null |
|
|
|
action_positive_embeddings = action_positive_embeddings * masks + (1 - masks) * action_null |
|
|
|
|
|
objs_subject = self.linears(torch.cat([subject_positive_embeddings, subject_xyxy_embedding], dim=-1)) |
|
objs_object = self.linears(torch.cat([object_positive_embeddings, object_xyxy_embedding], dim=-1)) |
|
objs_action = self.linear_action(torch.cat([action_positive_embeddings, action_xyxy_embedding], dim=-1)) |
|
|
|
|
|
objs_subject = objs_subject + self.interaction_embedding(objs_subject) |
|
objs_object = objs_object + self.interaction_embedding(objs_object) |
|
objs_action = objs_action + self.interaction_embedding(objs_action) |
|
|
|
|
|
objs_subject = objs_subject + self.position_embedding.emb(torch.tensor(0).to(objs_subject.device)) |
|
objs_object = objs_object + self.position_embedding.emb(torch.tensor(1).to(objs_object.device)) |
|
objs_action = objs_action + self.position_embedding.emb(torch.tensor(2).to(objs_action.device)) |
|
|
|
objs = torch.cat([objs_subject, objs_action, objs_object], dim=1) |
|
|
|
return objs |
|
|
|
|
|
class InteractDiffusionUNet2DConditionModel(UNet2DConditionModel): |
|
def __init__(self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 4, |
|
out_channels: int = 4, |
|
center_input_sample: bool = False, |
|
flip_sin_to_cos: bool = True, |
|
freq_shift: int = 0, |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", |
|
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), |
|
only_cross_attention: Union[bool, Tuple[bool]] = False, |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), |
|
layers_per_block: Union[int, Tuple[int]] = 2, |
|
downsample_padding: int = 1, |
|
mid_block_scale_factor: float = 1, |
|
dropout: float = 0.0, |
|
act_fn: str = "silu", |
|
norm_num_groups: Optional[int] = 32, |
|
norm_eps: float = 1e-5, |
|
cross_attention_dim: Union[int, Tuple[int]] = 1280, |
|
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, |
|
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None, |
|
encoder_hid_dim: Optional[int] = None, |
|
encoder_hid_dim_type: Optional[str] = None, |
|
attention_head_dim: Union[int, Tuple[int]] = 8, |
|
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
class_embed_type: Optional[str] = None, |
|
addition_embed_type: Optional[str] = None, |
|
addition_time_embed_dim: Optional[int] = None, |
|
num_class_embeds: Optional[int] = None, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_skip_time_act: bool = False, |
|
resnet_out_scale_factor: float = 1.0, |
|
time_embedding_type: str = "positional", |
|
time_embedding_dim: Optional[int] = None, |
|
time_embedding_act_fn: Optional[str] = None, |
|
timestep_post_act: Optional[str] = None, |
|
time_cond_proj_dim: Optional[int] = None, |
|
conv_in_kernel: int = 3, |
|
conv_out_kernel: int = 3, |
|
projection_class_embeddings_input_dim: Optional[int] = None, |
|
attention_type: str = "default", |
|
class_embeddings_concat: bool = False, |
|
mid_block_only_cross_attention: Optional[bool] = None, |
|
cross_attention_norm: Optional[str] = None, |
|
addition_embed_type_num_heads: int = 64, |
|
): |
|
super(InteractDiffusionUNet2DConditionModel, self).__init__( |
|
sample_size=sample_size, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
center_input_sample=center_input_sample, |
|
flip_sin_to_cos=flip_sin_to_cos, |
|
freq_shift=freq_shift, |
|
down_block_types=down_block_types, |
|
mid_block_type=mid_block_type, |
|
up_block_types=up_block_types, |
|
only_cross_attention=only_cross_attention, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
downsample_padding=downsample_padding, |
|
mid_block_scale_factor=mid_block_scale_factor, |
|
dropout=dropout, |
|
act_fn=act_fn, |
|
norm_num_groups=norm_num_groups, |
|
norm_eps=norm_eps, |
|
cross_attention_dim=cross_attention_dim, |
|
transformer_layers_per_block=transformer_layers_per_block, |
|
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block, |
|
encoder_hid_dim=encoder_hid_dim, |
|
encoder_hid_dim_type=encoder_hid_dim_type, |
|
attention_head_dim=attention_head_dim, |
|
num_attention_heads=num_attention_heads, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
class_embed_type=class_embed_type, |
|
addition_embed_type=addition_embed_type, |
|
addition_time_embed_dim=addition_time_embed_dim, |
|
num_class_embeds=num_class_embeds, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
resnet_skip_time_act=resnet_skip_time_act, |
|
resnet_out_scale_factor=resnet_out_scale_factor, |
|
time_embedding_type=time_embedding_type, |
|
time_embedding_dim=time_embedding_dim, |
|
time_embedding_act_fn=time_embedding_act_fn, |
|
timestep_post_act=timestep_post_act, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
conv_in_kernel=conv_in_kernel, |
|
conv_out_kernel=conv_out_kernel, |
|
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, |
|
attention_type=attention_type, |
|
class_embeddings_concat=class_embeddings_concat, |
|
mid_block_only_cross_attention=mid_block_only_cross_attention, |
|
cross_attention_norm=cross_attention_norm, |
|
addition_embed_type_num_heads=addition_embed_type_num_heads |
|
) |
|
|
|
|
|
positive_len = 768 |
|
if isinstance(self.config.cross_attention_dim, int): |
|
positive_len = self.config.cross_attention_dim |
|
elif isinstance(self.config.cross_attention_dim, tuple) or isinstance(self.config.cross_attention_dim, list): |
|
positive_len = self.config.cross_attention_dim[0] |
|
|
|
self.position_net = InteractDiffusionInteractionProjection( |
|
in_dim=positive_len, out_dim=self.config.cross_attention_dim |
|
) |
|
|