File size: 1,880 Bytes
ed8c89d
 
 
 
 
81b144b
ed8c89d
05b3b43
 
ed8c89d
 
 
 
 
81b144b
ed8c89d
 
 
81b144b
ed8c89d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b144b
 
 
 
 
 
 
 
 
 
ed8c89d
 
 
 
 
 
 
05b3b43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: zohaib99k/Bert_Arabic-SQuADv2-QA
tags:
- generated_from_trainer
model-index:
- name: QA_FineTuned_Arabert
  results: []
language:
- ar
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# QA_FineTuned_Arabert

This model is a fine-tuned version of [zohaib99k/Bert_Arabic-SQuADv2-QA](https://huggingface.co/zohaib99k/Bert_Arabic-SQuADv2-QA) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3343

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1603        | 0.46  | 10   | 2.7965          |
| 0.3055        | 0.92  | 20   | 3.0322          |
| 0.3091        | 1.38  | 30   | 2.8940          |
| 0.2692        | 1.84  | 40   | 2.9621          |
| 0.2198        | 2.3   | 50   | 2.9107          |
| 0.2112        | 2.76  | 60   | 3.1322          |
| 0.1576        | 3.22  | 70   | 3.2085          |
| 0.1392        | 3.68  | 80   | 3.1323          |
| 0.1474        | 4.14  | 90   | 3.2893          |
| 0.0905        | 4.6   | 100  | 3.3343          |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2