--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 0642c68c-f36b-4f0e-bcb2-4ece686f1819 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: qlora auto_resume_from_checkpoints: false base_model: unsloth/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - f9174ef8c17657b3_train_data.json ds_type: json format: custom path: /workspace/input_data/f9174ef8c17657b3_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: true hub_model_id: error577/0642c68c-f36b-4f0e-bcb2-4ece686f1819 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: null micro_batch_size: 1 mlflow_experiment_name: /tmp/f9174ef8c17657b3_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.2 wandb_entity: null wandb_mode: online wandb_name: 27a11b9e-1b27-41d2-8b20-883cfcd3a2ce wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 27a11b9e-1b27-41d2-8b20-883cfcd3a2ce warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 0642c68c-f36b-4f0e-bcb2-4ece686f1819 This model is a fine-tuned version of [unsloth/Qwen2.5-3B-Instruct](https://huggingface.co/unsloth/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7495 | 0.0073 | 1 | 1.1676 | | 0.5302 | 0.3663 | 50 | 0.6131 | | 0.4153 | 0.7326 | 100 | 0.5930 | | 0.6004 | 1.0989 | 150 | 0.5869 | | 0.4271 | 1.4652 | 200 | 0.5827 | | 0.4949 | 1.8315 | 250 | 0.5702 | | 0.3123 | 2.1978 | 300 | 0.6170 | | 0.5157 | 2.5641 | 350 | 0.6207 | | 0.276 | 2.9304 | 400 | 0.6036 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1