David Kagramanyan
commited on
Commit
·
a3c618b
1
Parent(s):
cae9ed3
handler
Browse files- deploy_endpoint_fix_spacy.ipynb +182 -0
- handler.py +42 -0
deploy_endpoint_fix_spacy.ipynb
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 91,
|
6 |
+
"outputs": [],
|
7 |
+
"source": [
|
8 |
+
"from typing import Any, Dict, List\n",
|
9 |
+
"\n",
|
10 |
+
"class EndpointHandler():\n",
|
11 |
+
" def __init__(\n",
|
12 |
+
" self,\n",
|
13 |
+
" path: str,\n",
|
14 |
+
" ):\n",
|
15 |
+
" # self.tagger = SequenceTagger.load(os.path.join(path,\"pytorch_model.bin\"))\n",
|
16 |
+
" self.nlp = spacy.load(\".\")\n",
|
17 |
+
"\n",
|
18 |
+
" def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:\n",
|
19 |
+
" \"\"\"\n",
|
20 |
+
" Args:\n",
|
21 |
+
" inputs (:obj:`str`):\n",
|
22 |
+
" a string containing some text\n",
|
23 |
+
" Return:\n",
|
24 |
+
" A :obj:`list`:. The object returned should be like [{\"entity_group\": \"XXX\", \"word\": \"some word\", \"start\": 3, \"end\": 6, \"score\": 0.82}] containing :\n",
|
25 |
+
" - \"entity_group\": A string representing what the entity is.\n",
|
26 |
+
" - \"word\": A substring of the original string that was detected as an entity.\n",
|
27 |
+
" - \"start\": the offset within `input` leading to `answer`. context[start:stop] == word\n",
|
28 |
+
" - \"end\": the ending offset within `input` leading to `answer`. context[start:stop] === word\n",
|
29 |
+
" - \"score\": A score between 0 and 1 describing how confident the model is for this entity.\n",
|
30 |
+
" \"\"\"\n",
|
31 |
+
" inputs = data.pop(\"inputs\", data)\n",
|
32 |
+
"\n",
|
33 |
+
" doc=self.nlp(inputs)\n",
|
34 |
+
"\n",
|
35 |
+
" entities = []\n",
|
36 |
+
" for span in doc.ents:\n",
|
37 |
+
" if len(span.ents) == 0:\n",
|
38 |
+
" continue\n",
|
39 |
+
" current_entity = {\n",
|
40 |
+
" \"entity_group\": span.label_,\n",
|
41 |
+
" \"word\": span.text,\n",
|
42 |
+
" \"start\": span.start_char,\n",
|
43 |
+
" \"end\": span.end_char,\n",
|
44 |
+
" # \"score\": span.score,\n",
|
45 |
+
" }\n",
|
46 |
+
" entities.append(current_entity)\n",
|
47 |
+
" \n",
|
48 |
+
" return entities\n"
|
49 |
+
],
|
50 |
+
"metadata": {
|
51 |
+
"collapsed": false,
|
52 |
+
"ExecuteTime": {
|
53 |
+
"end_time": "2023-10-05T11:56:54.341188400Z",
|
54 |
+
"start_time": "2023-10-05T11:56:54.327093400Z"
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"id": "af1d783960762219"
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": 95,
|
62 |
+
"outputs": [
|
63 |
+
{
|
64 |
+
"name": "stdout",
|
65 |
+
"output_type": "stream",
|
66 |
+
"text": [
|
67 |
+
"non_holiday_pred [{'entity_group': 'PERSON', 'word': 'George Washington', 'start': 0, 'end': 17}, {'entity_group': 'GPE', 'word': 'Washington', 'start': 28, 'end': 38}]\n"
|
68 |
+
]
|
69 |
+
}
|
70 |
+
],
|
71 |
+
"source": [
|
72 |
+
"my_handler = EndpointHandler(path=\".\")\n",
|
73 |
+
"\n",
|
74 |
+
"# prepare sample payload\n",
|
75 |
+
"non_holiday_payload = {\"inputs\": \"George Washington ging naar Washington\"}\n",
|
76 |
+
"\n",
|
77 |
+
"\n",
|
78 |
+
"# test the handler\n",
|
79 |
+
"non_holiday_pred=my_handler(non_holiday_payload)\n",
|
80 |
+
"\n",
|
81 |
+
"\n",
|
82 |
+
"# show results\n",
|
83 |
+
"print(\"non_holiday_pred\", non_holiday_pred)\n",
|
84 |
+
"\n"
|
85 |
+
],
|
86 |
+
"metadata": {
|
87 |
+
"collapsed": false,
|
88 |
+
"ExecuteTime": {
|
89 |
+
"end_time": "2023-10-05T11:57:36.320257400Z",
|
90 |
+
"start_time": "2023-10-05T11:57:34.860659500Z"
|
91 |
+
}
|
92 |
+
},
|
93 |
+
"id": "a12c4a4792afc707"
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": 50,
|
98 |
+
"outputs": [],
|
99 |
+
"source": [
|
100 |
+
"import spacy\n",
|
101 |
+
"\n",
|
102 |
+
"nlp = spacy.load(\".\")\n",
|
103 |
+
"# nlp = spacy.load('model')"
|
104 |
+
],
|
105 |
+
"metadata": {
|
106 |
+
"collapsed": false,
|
107 |
+
"ExecuteTime": {
|
108 |
+
"end_time": "2023-10-05T11:45:00.500755Z",
|
109 |
+
"start_time": "2023-10-05T11:44:59.084649300Z"
|
110 |
+
}
|
111 |
+
},
|
112 |
+
"id": "e8f6555c52db68bb"
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"cell_type": "code",
|
116 |
+
"execution_count": 86,
|
117 |
+
"outputs": [
|
118 |
+
{
|
119 |
+
"name": "stdout",
|
120 |
+
"output_type": "stream",
|
121 |
+
"text": [
|
122 |
+
"U.K. 27 31 PERSON\n",
|
123 |
+
"1 45 46 CARDINAL\n",
|
124 |
+
"Armenia 74 81 PERSON\n"
|
125 |
+
]
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"source": [
|
129 |
+
"txt=\"Apple is looking at buying U.K. startup for $1 billion and selling it to Armenia\"\n",
|
130 |
+
"doc = nlp(txt)\n",
|
131 |
+
"\n",
|
132 |
+
"for ent in doc.ents:\n",
|
133 |
+
" print(ent.text, ent.start_char, ent.end_char, ent.label_)"
|
134 |
+
],
|
135 |
+
"metadata": {
|
136 |
+
"collapsed": false,
|
137 |
+
"ExecuteTime": {
|
138 |
+
"end_time": "2023-10-05T11:54:40.099907400Z",
|
139 |
+
"start_time": "2023-10-05T11:54:40.073977200Z"
|
140 |
+
}
|
141 |
+
},
|
142 |
+
"id": "301895c94d69a22c"
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"cell_type": "code",
|
146 |
+
"execution_count": 30,
|
147 |
+
"outputs": [],
|
148 |
+
"source": [
|
149 |
+
"model = spacy.load(\"en_core_web_sm\")"
|
150 |
+
],
|
151 |
+
"metadata": {
|
152 |
+
"collapsed": false,
|
153 |
+
"ExecuteTime": {
|
154 |
+
"end_time": "2023-10-05T11:20:01.608708400Z",
|
155 |
+
"start_time": "2023-10-05T11:20:01.038168700Z"
|
156 |
+
}
|
157 |
+
},
|
158 |
+
"id": "7136bbcc5a994ac"
|
159 |
+
}
|
160 |
+
],
|
161 |
+
"metadata": {
|
162 |
+
"kernelspec": {
|
163 |
+
"name": "torch",
|
164 |
+
"language": "python",
|
165 |
+
"display_name": "torch"
|
166 |
+
},
|
167 |
+
"language_info": {
|
168 |
+
"codemirror_mode": {
|
169 |
+
"name": "ipython",
|
170 |
+
"version": 2
|
171 |
+
},
|
172 |
+
"file_extension": ".py",
|
173 |
+
"mimetype": "text/x-python",
|
174 |
+
"name": "python",
|
175 |
+
"nbconvert_exporter": "python",
|
176 |
+
"pygments_lexer": "ipython2",
|
177 |
+
"version": "2.7.6"
|
178 |
+
}
|
179 |
+
},
|
180 |
+
"nbformat": 4,
|
181 |
+
"nbformat_minor": 5
|
182 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List
|
2 |
+
import spacy
|
3 |
+
|
4 |
+
class EndpointHandler():
|
5 |
+
def __init__(
|
6 |
+
self,
|
7 |
+
path: str,
|
8 |
+
):
|
9 |
+
# self.tagger = SequenceTagger.load(os.path.join(path,"pytorch_model.bin"))
|
10 |
+
self.nlp = spacy.load(".")
|
11 |
+
|
12 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
13 |
+
"""
|
14 |
+
Args:
|
15 |
+
inputs (:obj:`str`):
|
16 |
+
a string containing some text
|
17 |
+
Return:
|
18 |
+
A :obj:`list`:. The object returned should be like [{"entity_group": "XXX", "word": "some word", "start": 3, "end": 6, "score": 0.82}] containing :
|
19 |
+
- "entity_group": A string representing what the entity is.
|
20 |
+
- "word": A substring of the original string that was detected as an entity.
|
21 |
+
- "start": the offset within `input` leading to `answer`. context[start:stop] == word
|
22 |
+
- "end": the ending offset within `input` leading to `answer`. context[start:stop] === word
|
23 |
+
- "score": A score between 0 and 1 describing how confident the model is for this entity.
|
24 |
+
"""
|
25 |
+
inputs = data.pop("inputs", data)
|
26 |
+
|
27 |
+
doc=self.nlp(inputs)
|
28 |
+
|
29 |
+
entities = []
|
30 |
+
for span in doc.ents:
|
31 |
+
if len(span.ents) == 0:
|
32 |
+
continue
|
33 |
+
current_entity = {
|
34 |
+
"entity_group": span.label_,
|
35 |
+
"word": span.text,
|
36 |
+
"start": span.start_char,
|
37 |
+
"end": span.end_char,
|
38 |
+
# "score": span.score,
|
39 |
+
}
|
40 |
+
entities.append(current_entity)
|
41 |
+
|
42 |
+
return entities
|