--- license: mit tags: - neural-vocoder - audio --- # DisCoder: High-Fidelity Music Vocoder Using Neural Audio Codecs [Paper]() | [Samples](https://lucala.github.io/discoder/) | [Code](https://github.com/ETH-DISCO/discoder) | [Model](https://huggingface.co/disco-eth/discoder) DisCoder is a neural vocoder that leverages a generative adversarial encoder-decoder architecture informed by a neural audio codec to reconstruct high-fidelity 44.1 kHz audio from mel spectrograms. Our approach first transforms the mel spectrogram into a lower-dimensional representation aligned with the Descript Audio Codec (DAC) latent space before reconstructing it to an audio signal using a fine-tuned DAC decoder. ## Installation The codebase has been tested with Python 3.11. To get started, clone the repository and set up the environment using Conda: ```shell git clone https://github.com/ETH-DISCO/discoder conda create -n discoder python=3.11 conda activate discoder python -m pip install -r requirements.txt ``` ## Inference with 🤗 Hugging Face Use the following script to perform inference with the pretrained DisCoder model from Hugging Face. The model uses the z prediction target and was trained using 128 mel bins. ```python import torch from discoder.models import DisCoder from discoder import meldataset, utils device = "cuda" sr_target = 44100 # load pretrained DisCoder model discoder = DisCoder.from_pretrained("disco-eth/discoder") discoder = discoder.eval().to(device) # load 44.1 kHz audio file and create mel spectrogram audio, _ = meldataset.load_wav(full_path="path/to/audio.wav", sr_target=sr_target, resample=True, normalize=True) audio = torch.tensor(audio).unsqueeze(dim=0).to(device) mel = utils.get_mel_spectrogram_from_config(audio, discoder.config) # [B, 128, frames] # reconstruct audio with torch.no_grad(): wav_recon = discoder(mel) # [B, 1, time] ``` ## Training To calculate [ViSQOL](https://github.com/google/visqol) during validation, install the required library by following the steps below: ```shell cd discoder git clone https://github.com/google/visqol bazel build :visqol -c opt cd visqol && pip install . ``` To start training, use the following command: ```shell python -u train.py --config configs/config_z.json ``` ## Inference The inference script allows batch processing of audio files. It converts all WAV files in the specified `input_dir` to mel spectrograms, then reconstructs them into audio files in the `output_dir`. ```shell python -u inference.py --input_dir input_dir --output_dir output_dir --checkpoint_file model.pt --config configs/config_z.json ``` You can also pass the `normalize_volume` flag to standardize the output volume.