Upload Cleaned Data Processing.ipynb
Browse files- Cleaned Data Processing.ipynb +333 -0
Cleaned Data Processing.ipynb
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "711a0e17",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"import requests\n",
|
12 |
+
"import zipfile\n",
|
13 |
+
"import pandas as pd\n",
|
14 |
+
"from io import BytesIO"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 8,
|
20 |
+
"id": "6abd0a8c",
|
21 |
+
"metadata": {},
|
22 |
+
"outputs": [],
|
23 |
+
"source": [
|
24 |
+
"import requests\n",
|
25 |
+
"import zipfile\n",
|
26 |
+
"import pandas as pd\n",
|
27 |
+
"from io import BytesIO\n",
|
28 |
+
"\n",
|
29 |
+
"# Function to handle ZIP files containing CSVs\n",
|
30 |
+
"def download_and_read_zip_csv(url):\n",
|
31 |
+
" with requests.get(url) as response:\n",
|
32 |
+
" response.raise_for_status() \n",
|
33 |
+
" with zipfile.ZipFile(BytesIO(response.content)) as zip_file:\n",
|
34 |
+
" data_file_name = zip_file.namelist()[0] \n",
|
35 |
+
" with zip_file.open(data_file_name) as df:\n",
|
36 |
+
" data = pd.read_csv(df, low_memory=False)\n",
|
37 |
+
" return data\n",
|
38 |
+
"\n",
|
39 |
+
"# Function to download and read an XLSX file\n",
|
40 |
+
"def download_and_read_xlsx(url):\n",
|
41 |
+
" with requests.get(url) as response:\n",
|
42 |
+
" response.raise_for_status()\n",
|
43 |
+
" data = pd.read_excel(BytesIO(response.content))\n",
|
44 |
+
" return data\n",
|
45 |
+
"\n",
|
46 |
+
"# URLs\n",
|
47 |
+
"url_chapel = \"https://huggingface.co/datasets/zwn22/NC_Crime/resolve/main/Chapel_Hill.csv.zip\"\n",
|
48 |
+
"url_raleigh = \"https://huggingface.co/datasets/zwn22/NC_Crime/resolve/main/Raleigh.csv.zip\"\n",
|
49 |
+
"url_cary = \"https://data.townofcary.org/api/explore/v2.1/catalog/datasets/cpd-incidents/exports/csv?lang=en&timezone=US%2FEastern&use_labels=true&delimiter=%2C\"\n",
|
50 |
+
"url_durham = \"https://www.arcgis.com/sharing/rest/content/items/7132216432df4957830593359b0c4030/data\"\n",
|
51 |
+
"\n",
|
52 |
+
"Chapel = download_and_read_zip_csv(url_chapel)\n",
|
53 |
+
"Raleigh = download_and_read_zip_csv(url_raleigh)\n",
|
54 |
+
"Cary = pd.read_csv(url_cary, low_memory=False) \n",
|
55 |
+
"Durham = download_and_read_xlsx(url_durham) "
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 76,
|
61 |
+
"id": "c7195730",
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [],
|
64 |
+
"source": [
|
65 |
+
"import pandas as pd\n",
|
66 |
+
"from pyproj import Transformer\n",
|
67 |
+
"\n",
|
68 |
+
"def process_crime_data(filename, city_name):\n",
|
69 |
+
" pd.options.mode.chained_assignment = None \n",
|
70 |
+
"\n",
|
71 |
+
" def categorize_crime(crime):\n",
|
72 |
+
" for category, crimes in crime_mapping.items():\n",
|
73 |
+
" if crime in crimes:\n",
|
74 |
+
" return category\n",
|
75 |
+
" return 'Miscellaneous'\n",
|
76 |
+
" \n",
|
77 |
+
" def convert_coordinates(x, y):\n",
|
78 |
+
" transformer = Transformer.from_crs(\"epsg:2264\", \"epsg:4326\", always_xy=True)\n",
|
79 |
+
" lon, lat = transformer.transform(x, y)\n",
|
80 |
+
" return pd.Series([lat, lon])\n",
|
81 |
+
" \n",
|
82 |
+
" crime_mapping = {\n",
|
83 |
+
" 'Theft': [\n",
|
84 |
+
" 'BURGLARY', 'MOTOR VEHICLE THEFT', 'LARCENY',\n",
|
85 |
+
" 'LARCENY - AUTOMOBILE PARTS OR ACCESSORIES', 'TOWED/ABANDONED VEHICLE',\n",
|
86 |
+
" 'LARCENY - FROM MOTOR VEHICLE', 'LARCENY - SHOPLIFTING', 'LOST PROPERTY',\n",
|
87 |
+
" 'VANDALISM', 'LARCENY - ALL OTHER', 'LARCENY - FROM BUILDING',\n",
|
88 |
+
" 'RECOVERED STOLEN PROPERTY (OTHER JURISDICTION)', 'LARCENY - POCKET-PICKING',\n",
|
89 |
+
" 'LARCENY - FROM COIN-OPERATED DEVICE', 'LARCENY - PURSESNATCHING',\n",
|
90 |
+
" 'LARCENY FROM MV', 'MV THEFT', 'STOLEN PROPERTY',\n",
|
91 |
+
" 'THEFT/LARCENY', 'LARCENY FROM AU', 'LARCENY FROM PE', 'LARCENY OF OTHE',\n",
|
92 |
+
" 'LARCENY FROM BU', 'LARCENY OF BIKE', 'LARCENY FROM RE', 'LARCENY OF AUTO'\n",
|
93 |
+
" ],\n",
|
94 |
+
" 'Fraud': [\n",
|
95 |
+
" 'FRAUD-IDENTITY THEFT', 'EMBEZZLEMENT', 'COUNTERFEITING/FORGERY',\n",
|
96 |
+
" 'FRAUD - CONFIDENCE GAMES/TRICKERY', 'FRAUD - CREDIT CARD/ATM',\n",
|
97 |
+
" 'FRAUD - UNAUTHORIZED USE OF CONVEYANCE', 'FRAUD - FALSE PRETENSE',\n",
|
98 |
+
" 'FRAUD - IMPERSONATION', 'FRAUD - WIRE/COMPUTER/OTHER ELECTRONIC',\n",
|
99 |
+
" 'FRAUD - WORTHLESS CHECKS', 'FRAUD-FAIL TO RETURN RENTAL VEHICLE',\n",
|
100 |
+
" 'FRAUD-HACKING/COMPUTER INVASION', 'FRAUD-WELFARE FRAUD', 'FRAUD', 'BRIBERY',\n",
|
101 |
+
" 'FRAUD OR DECEPT'\n",
|
102 |
+
" ],\n",
|
103 |
+
" 'Assault': [\n",
|
104 |
+
" 'SIMPLE ASSAULT', 'AGGRAVATED ASSAULT', 'ASSAULT', 'ASSAULT/SEXUAL',\n",
|
105 |
+
" 'STAB GUNSHOT PE', 'ACTIVE ASSAILAN'\n",
|
106 |
+
" ],\n",
|
107 |
+
" 'Drugs': [\n",
|
108 |
+
" 'DRUG/NARCOTIC VIOLATIONS', 'DRUG EQUIPMENT/PARAPHERNALIA', 'DRUGS',\n",
|
109 |
+
" 'DRUG VIOLATIONS'\n",
|
110 |
+
" ],\n",
|
111 |
+
" 'Sexual Offenses': [\n",
|
112 |
+
" 'SEX OFFENSE - FORCIBLE RAPE', 'SEX OFFENSE - SEXUAL ASSAULT WITH AN OBJECT',\n",
|
113 |
+
" 'SEX OFFENSE - FONDLING', 'SEX OFFENSE - INDECENT EXPOSURE', 'SEX OFFENSE - FORCIBLE SODOMY',\n",
|
114 |
+
" 'SEX OFFENSE - STATUTORY RAPE', 'SEX OFFENSE - PEEPING TOM', 'SEX OFFENSE - INCEST',\n",
|
115 |
+
" 'SEX OFFENSES', 'SEXUAL OFFENSE'\n",
|
116 |
+
" ],\n",
|
117 |
+
" 'Homicide': [\n",
|
118 |
+
" 'HOMICIDE-MURDER/NON-NEGLIGENT MANSLAUGHTER', 'JUSTIFIABLE HOMICIDE',\n",
|
119 |
+
" 'HOMICIDE - NEGLIGENT MANSLAUGHTER', 'MURDER', 'SUICIDE ATTEMPT', 'ABUSE/ABANDOMEN',\n",
|
120 |
+
" 'DECEASED PERSON'\n",
|
121 |
+
" ],\n",
|
122 |
+
" 'Arson': ['ARSON'],\n",
|
123 |
+
" 'Kidnapping': ['KIDNAPPING/ABDUCTION', 'KIDNAPPING'],\n",
|
124 |
+
" 'Weapons Violations': ['WEAPON VIOLATIONS', 'WEAPONS VIOLATION', 'WEAPON/FIREARMS'],\n",
|
125 |
+
" 'Traffic Violations': [\n",
|
126 |
+
" 'ALL TRAFFIC (EXCEPT DWI)', 'TRAFFIC', 'UNAUTHORIZED MOTOR VEHICLE USE',\n",
|
127 |
+
" 'TRAFFIC VIOLATIONS', 'LIQUOR LAW VIOLATIONS', 'TRAFFIC STOP', 'TRAFFIC/TRANSPO',\n",
|
128 |
+
" 'TRAFFIC VIOLATI', 'MVC', 'MVC W INJURY', 'MVC W INJURY AB', 'MVC W INJURY DE',\n",
|
129 |
+
" 'MVC ENTRAPMENT'\n",
|
130 |
+
" ],\n",
|
131 |
+
" 'Disorderly Conduct': [\n",
|
132 |
+
" 'DISORDERLY CONDUCT', 'DISORDERLY CONDUCT-DRUNK AND DISRUPTIVE',\n",
|
133 |
+
" 'DISORDERLY CONDUCT-FIGHTING (AFFRAY)', 'DISORDERLY CONDUCT-UNLAWFUL ASSEMBLY',\n",
|
134 |
+
" 'DISTURBANCE/NUI', 'DOMESTIC DISTUR', 'DISPUTE', 'DISTURBANCE', 'LOST PROPERTY',\n",
|
135 |
+
" 'TRESPASSING/UNW', 'REFUSAL TO LEAV', 'SUSPICIOUS COND', 'STRUCTURE FIRE'\n",
|
136 |
+
" ],\n",
|
137 |
+
" 'Gambling': [\n",
|
138 |
+
" 'GAMBLING - OPERATING/PROMOTING/ASSISTING', 'GAMBLING - BETTING/WAGERING', 'GAMBLING'\n",
|
139 |
+
" ],\n",
|
140 |
+
" 'Animal-related Offenses': ['ANIMAL CRUELTY', 'ANIMAL BITE', 'ANIMAL', 'ANIMAL CALL'],\n",
|
141 |
+
" 'Prostitution-related Offenses': [\n",
|
142 |
+
" 'PROSTITUTION', 'PROSTITUTION - ASSISTING/PROMOTING', 'PROSTITUTION - PURCHASING'\n",
|
143 |
+
" ],\n",
|
144 |
+
" 'Miscellaneous': [\n",
|
145 |
+
" 'MISCELLANEOUS', 'ALL OTHER OFFENSES', '<Null>', 'SUSPICIOUS/WANT', 'MISC OFFICER IN',\n",
|
146 |
+
" 'INDECENCY/LEWDN', 'PUBLIC SERVICE', 'TRESPASSING', 'UNKNOWN PROBLEM', 'LOUD NOISE',\n",
|
147 |
+
" 'ESCORT', 'ABDUCTION/CUSTO', 'THREATS', 'BURGLAR ALARM', 'DOMESTIC', 'PROPERTY FOUND',\n",
|
148 |
+
" 'FIREWORKS', 'MISSING/RUNAWAY', 'MENTAL DISORDER', 'CHECK WELL BEIN', 'PSYCHIATRIC',\n",
|
149 |
+
" 'OPEN DOOR', 'ABANDONED AUTO', 'HARASSMENT THRE', 'JUVENILE RELATE', 'ASSIST MOTORIST',\n",
|
150 |
+
" 'HAZARDOUS DRIVI', 'GAS LEAK FIRE', 'ASSIST OTHER AG', 'DOMESTIC ASSIST', 'SUSPICIOUS VEHI',\n",
|
151 |
+
" 'UNKNOWN LE', 'ALARMS', '911 HANGUP', 'BOMB/CBRN/PRODU', 'STATIONARY PATR', 'LITTERING',\n",
|
152 |
+
" 'HOUSE CHECK', 'CARDIAC', 'CLOSE PATROL', 'BOMB FOUND/SUSP', 'INFO FOR ALL UN', 'UNCONCIOUS OR F',\n",
|
153 |
+
" 'LIFTING ASSISTA', 'ATTEMPT TO LOCA', 'SICK PERSON', 'HEAT OR COLD EX', 'CONFINED SPACE',\n",
|
154 |
+
" 'TRAUMATIC INJUR', 'DROWNING', 'CITY ORDINANCE', 'JUVENILE', 'MISSING PERSON',\n",
|
155 |
+
" 'PUBLIC SERVICE', 'PUBLICE SERVICE'\n",
|
156 |
+
" ],\n",
|
157 |
+
" 'Robbery': ['ROBBERY'],\n",
|
158 |
+
" 'Extortion': ['EXTORTION'],\n",
|
159 |
+
" 'Human Trafficking': ['HUMAN TRAFFICKING']\n",
|
160 |
+
" }\n",
|
161 |
+
" \n",
|
162 |
+
" crime_severity_mapping = {\n",
|
163 |
+
" 'Miscellaneous': 'Minor',\n",
|
164 |
+
" 'Disorderly Conduct': 'Minor',\n",
|
165 |
+
" 'Traffic Violations': 'Minor',\n",
|
166 |
+
" 'Animal-related Offenses': 'Minor',\n",
|
167 |
+
" 'Prostitution-related Offenses': 'Minor',\n",
|
168 |
+
" 'Gambling': 'Minor',\n",
|
169 |
+
" 'Public Service': 'Minor',\n",
|
170 |
+
" 'Juvenile': 'Minor',\n",
|
171 |
+
" 'Fraud': 'Moderate',\n",
|
172 |
+
" 'Theft': 'Moderate',\n",
|
173 |
+
" 'Drugs': 'Moderate',\n",
|
174 |
+
" 'Assault': 'Moderate',\n",
|
175 |
+
" 'Sexual Offenses': 'Moderate',\n",
|
176 |
+
" 'Weapons Violations': 'Moderate',\n",
|
177 |
+
" 'Vandalism': 'Moderate',\n",
|
178 |
+
" 'Burglary': 'Moderate',\n",
|
179 |
+
" 'Robbery': 'Moderate',\n",
|
180 |
+
" 'Kidnapping': 'Severe',\n",
|
181 |
+
" 'Homicide': 'Severe',\n",
|
182 |
+
" 'Arson': 'Severe',\n",
|
183 |
+
" 'Extortion': 'Severe',\n",
|
184 |
+
" 'Human Trafficking': 'Severe',\n",
|
185 |
+
" 'Murder': 'Severe'\n",
|
186 |
+
" }\n",
|
187 |
+
"\n",
|
188 |
+
" df = pd.DataFrame() # Initialize an empty DataFrame for generic use\n",
|
189 |
+
" \n",
|
190 |
+
" \n",
|
191 |
+
" \n",
|
192 |
+
" if city_name == 'Durham':\n",
|
193 |
+
" df = pd.read_excel(filename)\n",
|
194 |
+
" df['Weapon'] = df['Weapon'].replace(['(blank)', 'Not Applicable/None', 'Unknown/Not Stated'], None) \n",
|
195 |
+
" df['crime_major_category'] = df['Offense'].apply(categorize_crime)\n",
|
196 |
+
" \n",
|
197 |
+
" # Apply coordinate conversion and categorization\n",
|
198 |
+
" coordinates = df.apply(lambda row: convert_coordinates(row['X'], row['Y']), axis=1)\n",
|
199 |
+
" df['latitude'], df['longitude'] = coordinates[0], coordinates[1]\n",
|
200 |
+
"\n",
|
201 |
+
" new_df = pd.DataFrame({\n",
|
202 |
+
" \"year\": pd.to_datetime(df['Report Date']).dt.year,\n",
|
203 |
+
" \"city\": \"Durham\",\n",
|
204 |
+
" \"crime_major_category\": df['crime_major_category'],\n",
|
205 |
+
" \"crime_detail\": df['Offense'].str.title(),\n",
|
206 |
+
" \"latitude\": df['latitude'],\n",
|
207 |
+
" \"longitude\": df['longitude'],\n",
|
208 |
+
" \"occurance_time\": pd.to_datetime(df['Report Date'].astype(str) + ' ' + df['Report Time'], errors='coerce').dt.strftime('%Y/%m/%d %H:%M:%S'),\n",
|
209 |
+
" \"clear_status\": df['Status'],\n",
|
210 |
+
" \"incident_address\": df['Address'],\n",
|
211 |
+
" \"notes\": df['Weapon'].apply(lambda x: f\"Weapon: {x}\" if pd.notnull(x) else \"No Data\")\n",
|
212 |
+
" }).fillna(\"No Data\")\n",
|
213 |
+
"\n",
|
214 |
+
" \n",
|
215 |
+
" elif city_name == 'Raleigh':\n",
|
216 |
+
" df = pd.read_csv(filename, low_memory=False)\n",
|
217 |
+
" new_df = pd.DataFrame({\n",
|
218 |
+
" \"year\": df['reported_year'],\n",
|
219 |
+
" \"city\": \"Raleigh\",\n",
|
220 |
+
" \"crime_major_category\": df['crime_category'].apply(categorize_crime),\n",
|
221 |
+
" \"crime_detail\": df['crime_description'],\n",
|
222 |
+
" \"latitude\": df['latitude'].round(5).fillna(0),\n",
|
223 |
+
" \"longitude\": df['longitude'].round(5).fillna(0),\n",
|
224 |
+
" \"occurance_time\": pd.to_datetime(df['reported_date'].str.replace(r'\\+\\d{2}$', '', regex=True), errors='coerce').dt.strftime('%Y/%m/%d %H:%M:%S'),\n",
|
225 |
+
" \"clear_status\": None,\n",
|
226 |
+
" \"incident_address\": df['reported_block_address'] + ', ' + df['district'] + ', Raleigh',\n",
|
227 |
+
" \"notes\": 'District: '+ df['district'].str.title()\n",
|
228 |
+
" }).fillna(\"No Data\")\n",
|
229 |
+
" \n",
|
230 |
+
" elif city_name == 'Cary':\n",
|
231 |
+
" df = pd.read_csv(filename, low_memory=False).dropna(subset=['Year'])\n",
|
232 |
+
" new_df = pd.DataFrame({\n",
|
233 |
+
" \"year\": df[\"Year\"].astype(int),\n",
|
234 |
+
" \"city\": \"Cary\",\n",
|
235 |
+
" \"crime_major_category\": df['Crime Category'].apply(categorize_crime).str.title(),\n",
|
236 |
+
" \"crime_detail\": df['Crime Type'].str.title(),\n",
|
237 |
+
" \"latitude\": df['Lat'].fillna(0).round(5).fillna(0),\n",
|
238 |
+
" \"longitude\": df['Lon'].fillna(0).round(5).fillna(0),\n",
|
239 |
+
" \"occurance_time\": pd.to_datetime(df['Begin Date Of Occurrence'] + ' ' + df['Begin Time Of Occurrence']).dt.strftime('%Y/%m/%d %H:%M:%S'),\n",
|
240 |
+
" \"clear_status\": None,\n",
|
241 |
+
" \"incident_address\": df['Geo Code'],\n",
|
242 |
+
" \"notes\": 'District: '+ df['District'].str.title() + ' Violent Property: ' + df['Violent Property'].str.title()\n",
|
243 |
+
" }).fillna(\"No Data\")\n",
|
244 |
+
" \n",
|
245 |
+
" elif city_name == 'Chapel Hill':\n",
|
246 |
+
" df = pd.read_csv(filename, low_memory=False)\n",
|
247 |
+
" replace_values = {'<Null>': None, 'NONE': None}\n",
|
248 |
+
" df['Weapon_Description'] = df['Weapon_Description'].replace(replace_values)\n",
|
249 |
+
" new_df = pd.DataFrame({\n",
|
250 |
+
" \"year\": pd.to_datetime(df['Date_of_Occurrence']).dt.year,\n",
|
251 |
+
" \"city\": \"Chapel Hill\",\n",
|
252 |
+
" \"crime_major_category\": df['Reported_As'].apply(categorize_crime),\n",
|
253 |
+
" \"crime_detail\": df['Offense'].str.title(),\n",
|
254 |
+
" \"latitude\": df['X'].round(5).fillna(0),\n",
|
255 |
+
" \"longitude\": df['Y'].round(5).fillna(0),\n",
|
256 |
+
" \"occurance_time\": pd.to_datetime(df['Date_of_Occurrence'].str.replace(r'\\+\\d{2}$', '', regex=True)).dt.strftime('%Y/%m/%d %H:%M:%S'),\n",
|
257 |
+
" \"clear_status\": None,\n",
|
258 |
+
" \"incident_address\": df['Street'].str.replace(\"@\", \" \"),\n",
|
259 |
+
" \"notes\": df['Weapon_Description'].apply(lambda x: f\"Weapon: {x}\" if pd.notnull(x) else \"Weapon: None\").str.title()\n",
|
260 |
+
" }).fillna(\"No Data\")\n",
|
261 |
+
" indices_to_switch = new_df.loc[(new_df['latitude'].between(-82, -75)) & (new_df['longitude'].between(35, 40))].index\n",
|
262 |
+
" for idx in indices_to_switch:\n",
|
263 |
+
" new_df.at[idx, 'latitude'], new_df.at[idx, 'longitude'] = new_df.at[idx, 'longitude'], new_df.at[idx, 'latitude']\n",
|
264 |
+
"\n",
|
265 |
+
" \n",
|
266 |
+
" new_df = new_df[new_df['year'] >= 2015]\n",
|
267 |
+
" new_df = new_df.loc[(new_df['latitude'].between(35, 40)) & (new_df['longitude'].between(-82, -75))]\n",
|
268 |
+
" new_df['crime_severity'] = new_df['crime_major_category'].map(crime_severity_mapping)\n",
|
269 |
+
" return new_df\n",
|
270 |
+
"\n",
|
271 |
+
"# Example usage\n",
|
272 |
+
"Cary_new = process_crime_data(\"Cary.csv\", \"Cary\")\n",
|
273 |
+
"Chapel_new = process_crime_data(\"Chapel_hill.csv\", \"Chapel Hill\")\n",
|
274 |
+
"Durham_new = process_crime_data(\"Durham.xlsx\", \"Durham\")\n",
|
275 |
+
"Raleigh_new = process_crime_data(\"Raleigh.csv\", \"Raleigh\")\n"
|
276 |
+
]
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"cell_type": "code",
|
280 |
+
"execution_count": 77,
|
281 |
+
"id": "cfd5d140",
|
282 |
+
"metadata": {},
|
283 |
+
"outputs": [],
|
284 |
+
"source": [
|
285 |
+
"NC_v1 = pd.concat([Durham_new, Chapel_new, Cary_new, Raleigh_new], ignore_index=True)\n",
|
286 |
+
"NC_v1.to_csv('NC_v1.csv', index=False)"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": 5,
|
292 |
+
"id": "8186c46a",
|
293 |
+
"metadata": {},
|
294 |
+
"outputs": [
|
295 |
+
{
|
296 |
+
"data": {
|
297 |
+
"text/plain": [
|
298 |
+
"(585886, 11)"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
"execution_count": 5,
|
302 |
+
"metadata": {},
|
303 |
+
"output_type": "execute_result"
|
304 |
+
}
|
305 |
+
],
|
306 |
+
"source": [
|
307 |
+
"NC_v1 = pd.read_csv(\"NC_v1.csv\")\n",
|
308 |
+
"NC_v1.shape"
|
309 |
+
]
|
310 |
+
}
|
311 |
+
],
|
312 |
+
"metadata": {
|
313 |
+
"kernelspec": {
|
314 |
+
"display_name": "Python 3 (ipykernel)",
|
315 |
+
"language": "python",
|
316 |
+
"name": "python3"
|
317 |
+
},
|
318 |
+
"language_info": {
|
319 |
+
"codemirror_mode": {
|
320 |
+
"name": "ipython",
|
321 |
+
"version": 3
|
322 |
+
},
|
323 |
+
"file_extension": ".py",
|
324 |
+
"mimetype": "text/x-python",
|
325 |
+
"name": "python",
|
326 |
+
"nbconvert_exporter": "python",
|
327 |
+
"pygments_lexer": "ipython3",
|
328 |
+
"version": "3.11.5"
|
329 |
+
}
|
330 |
+
},
|
331 |
+
"nbformat": 4,
|
332 |
+
"nbformat_minor": 5
|
333 |
+
}
|