zeroMN commited on
Commit
0735510
·
verified ·
1 Parent(s): d1e5e7d

Upload 249 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +7 -59
  2. .idea/.gitignore +8 -0
  3. .idea/inspectionProfiles/Project_Default.xml +32 -0
  4. .idea/inspectionProfiles/profiles_settings.xml +6 -0
  5. .idea/misc.xml +4 -0
  6. .idea/modules.xml +8 -0
  7. .idea/nlp_corpus.iml +8 -0
  8. .idea/vcs.xml +6 -0
  9. README.md +10 -0
  10. open_ner_data/2020_ccks_ner/chip_2020_1_test1/test1.txt +0 -0
  11. open_ner_data/2020_ccks_ner/chip_2020_1_train/train_data.txt +0 -0
  12. open_ner_data/2020_ccks_ner/chip_2020_1_train/val_data.txt +0 -0
  13. open_ner_data/2020_ccks_ner/中文医学文本命名实体识别_test2/中文医学文本命名实体识别_test2/test2.txt +0 -0
  14. open_ner_data/MSRA/msra.txt +3 -0
  15. open_ner_data/MSRA/msra_1000.txt +0 -0
  16. open_ner_data/MSRA/msra_test.txt +0 -0
  17. open_ner_data/MSRA/msra_train.txt +3 -0
  18. open_ner_data/ResumeNER/dev.char.bmes +0 -0
  19. open_ner_data/ResumeNER/dev.txt +0 -0
  20. open_ner_data/ResumeNER/test.char.bmes +0 -0
  21. open_ner_data/ResumeNER/test.txt +0 -0
  22. open_ner_data/ResumeNER/train.char.bmes +0 -0
  23. open_ner_data/ResumeNER/train.txt +0 -0
  24. open_ner_data/__init__.py +0 -0
  25. open_ner_data/boson/boson.txt +0 -0
  26. open_ner_data/boson/boson_1000.txt +0 -0
  27. open_ner_data/cluener_public/dev.txt +0 -0
  28. open_ner_data/cluener_public/test.txt +0 -0
  29. open_ner_data/cluener_public/train.txt +0 -0
  30. open_ner_data/cluener_public/train_1000.txt +0 -0
  31. open_ner_data/data_transfer.py +331 -0
  32. open_ner_data/people_daily/people_daily_ner.txt +3 -0
  33. open_ner_data/people_daily/people_daily_ner_1000.txt +0 -0
  34. open_ner_data/tianchi_yiyao/chusai_xuanshou/1000.txt +1 -0
  35. open_ner_data/tianchi_yiyao/chusai_xuanshou/1001.txt +1 -0
  36. open_ner_data/tianchi_yiyao/chusai_xuanshou/1002.txt +1 -0
  37. open_ner_data/tianchi_yiyao/chusai_xuanshou/1003.txt +1 -0
  38. open_ner_data/tianchi_yiyao/chusai_xuanshou/1004.txt +1 -0
  39. open_ner_data/tianchi_yiyao/chusai_xuanshou/1005.txt +1 -0
  40. open_ner_data/tianchi_yiyao/chusai_xuanshou/1006.txt +1 -0
  41. open_ner_data/tianchi_yiyao/chusai_xuanshou/1007.txt +1 -0
  42. open_ner_data/tianchi_yiyao/chusai_xuanshou/1008.txt +1 -0
  43. open_ner_data/tianchi_yiyao/chusai_xuanshou/1009.txt +1 -0
  44. open_ner_data/tianchi_yiyao/chusai_xuanshou/1010.txt +1 -0
  45. open_ner_data/tianchi_yiyao/chusai_xuanshou/1011.txt +1 -0
  46. open_ner_data/tianchi_yiyao/chusai_xuanshou/1012.txt +1 -0
  47. open_ner_data/tianchi_yiyao/chusai_xuanshou/1013.txt +1 -0
  48. open_ner_data/tianchi_yiyao/chusai_xuanshou/1014.txt +1 -0
  49. open_ner_data/tianchi_yiyao/chusai_xuanshou/1015.txt +1 -0
  50. open_ner_data/tianchi_yiyao/chusai_xuanshou/1016.txt +1 -0
.gitattributes CHANGED
@@ -1,59 +1,7 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.lz4 filter=lfs diff=lfs merge=lfs -text
12
- *.mds filter=lfs diff=lfs merge=lfs -text
13
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
14
- *.model filter=lfs diff=lfs merge=lfs -text
15
- *.msgpack filter=lfs diff=lfs merge=lfs -text
16
- *.npy filter=lfs diff=lfs merge=lfs -text
17
- *.npz filter=lfs diff=lfs merge=lfs -text
18
- *.onnx filter=lfs diff=lfs merge=lfs -text
19
- *.ot filter=lfs diff=lfs merge=lfs -text
20
- *.parquet filter=lfs diff=lfs merge=lfs -text
21
- *.pb filter=lfs diff=lfs merge=lfs -text
22
- *.pickle filter=lfs diff=lfs merge=lfs -text
23
- *.pkl filter=lfs diff=lfs merge=lfs -text
24
- *.pt filter=lfs diff=lfs merge=lfs -text
25
- *.pth filter=lfs diff=lfs merge=lfs -text
26
- *.rar filter=lfs diff=lfs merge=lfs -text
27
- *.safetensors filter=lfs diff=lfs merge=lfs -text
28
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
- *.tar.* filter=lfs diff=lfs merge=lfs -text
30
- *.tar filter=lfs diff=lfs merge=lfs -text
31
- *.tflite filter=lfs diff=lfs merge=lfs -text
32
- *.tgz filter=lfs diff=lfs merge=lfs -text
33
- *.wasm filter=lfs diff=lfs merge=lfs -text
34
- *.xz filter=lfs diff=lfs merge=lfs -text
35
- *.zip filter=lfs diff=lfs merge=lfs -text
36
- *.zst filter=lfs diff=lfs merge=lfs -text
37
- *tfevents* filter=lfs diff=lfs merge=lfs -text
38
- # Audio files - uncompressed
39
- *.pcm filter=lfs diff=lfs merge=lfs -text
40
- *.sam filter=lfs diff=lfs merge=lfs -text
41
- *.raw filter=lfs diff=lfs merge=lfs -text
42
- # Audio files - compressed
43
- *.aac filter=lfs diff=lfs merge=lfs -text
44
- *.flac filter=lfs diff=lfs merge=lfs -text
45
- *.mp3 filter=lfs diff=lfs merge=lfs -text
46
- *.ogg filter=lfs diff=lfs merge=lfs -text
47
- *.wav filter=lfs diff=lfs merge=lfs -text
48
- # Image files - uncompressed
49
- *.bmp filter=lfs diff=lfs merge=lfs -text
50
- *.gif filter=lfs diff=lfs merge=lfs -text
51
- *.png filter=lfs diff=lfs merge=lfs -text
52
- *.tiff filter=lfs diff=lfs merge=lfs -text
53
- # Image files - compressed
54
- *.jpg filter=lfs diff=lfs merge=lfs -text
55
- *.jpeg filter=lfs diff=lfs merge=lfs -text
56
- *.webp filter=lfs diff=lfs merge=lfs -text
57
- # Video files - compressed
58
- *.mp4 filter=lfs diff=lfs merge=lfs -text
59
- *.webm filter=lfs diff=lfs merge=lfs -text
 
1
+ dialog/chitchat/douban/train.txt filter=lfs diff=lfs merge=lfs -text
2
+ dialog/chitchat/LCCC/train_dev.txt filter=lfs diff=lfs merge=lfs -text
3
+ dialog/chitchat/weibo/train.txt filter=lfs diff=lfs merge=lfs -text
4
+ dialog/knowledge/tencent/train.txt.zip filter=lfs diff=lfs merge=lfs -text
5
+ open_ner_data/MSRA/msra_train.txt filter=lfs diff=lfs merge=lfs -text
6
+ open_ner_data/MSRA/msra.txt filter=lfs diff=lfs merge=lfs -text
7
+ open_ner_data/people_daily/people_daily_ner.txt filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.idea/.gitignore ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # Default ignored files
2
+ /shelf/
3
+ /workspace.xml
4
+ # Datasource local storage ignored files
5
+ /../../../../:\craig\nlp_corpus\.idea/dataSources/
6
+ /dataSources.local.xml
7
+ # Editor-based HTTP Client requests
8
+ /httpRequests/
.idea/inspectionProfiles/Project_Default.xml ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <profile version="1.0">
3
+ <option name="myName" value="Project Default" />
4
+ <inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
5
+ <option name="ignoredPackages">
6
+ <value>
7
+ <list size="19">
8
+ <item index="0" class="java.lang.String" itemvalue="gensim" />
9
+ <item index="1" class="java.lang.String" itemvalue="pyplotz" />
10
+ <item index="2" class="java.lang.String" itemvalue="jieba" />
11
+ <item index="3" class="java.lang.String" itemvalue="fairseq" />
12
+ <item index="4" class="java.lang.String" itemvalue="scikit_learn" />
13
+ <item index="5" class="java.lang.String" itemvalue="torch" />
14
+ <item index="6" class="java.lang.String" itemvalue="torchvision" />
15
+ <item index="7" class="java.lang.String" itemvalue="pytorch_crf" />
16
+ <item index="8" class="java.lang.String" itemvalue="redis" />
17
+ <item index="9" class="java.lang.String" itemvalue="torchcrf" />
18
+ <item index="10" class="java.lang.String" itemvalue="pysolr" />
19
+ <item index="11" class="java.lang.String" itemvalue="kafka" />
20
+ <item index="12" class="java.lang.String" itemvalue="tensorboardX" />
21
+ <item index="13" class="java.lang.String" itemvalue="Flask_Cors" />
22
+ <item index="14" class="java.lang.String" itemvalue="arango" />
23
+ <item index="15" class="java.lang.String" itemvalue="pyltp" />
24
+ <item index="16" class="java.lang.String" itemvalue="rpyc" />
25
+ <item index="17" class="java.lang.String" itemvalue="pytorch_transformers" />
26
+ <item index="18" class="java.lang.String" itemvalue="bayesian_optimization" />
27
+ </list>
28
+ </value>
29
+ </option>
30
+ </inspection_tool>
31
+ </profile>
32
+ </component>
.idea/inspectionProfiles/profiles_settings.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <settings>
3
+ <option name="USE_PROJECT_PROFILE" value="false" />
4
+ <version value="1.0" />
5
+ </settings>
6
+ </component>
.idea/misc.xml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectRootManager" version="2" project-jdk-name="Python 2.7" project-jdk-type="Python SDK" />
4
+ </project>
.idea/modules.xml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectModuleManager">
4
+ <modules>
5
+ <module fileurl="file://$PROJECT_DIR$/.idea/nlp_corpus.iml" filepath="$PROJECT_DIR$/.idea/nlp_corpus.iml" />
6
+ </modules>
7
+ </component>
8
+ </project>
.idea/nlp_corpus.iml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <module type="PYTHON_MODULE" version="4">
3
+ <component name="NewModuleRootManager">
4
+ <content url="file://$MODULE_DIR$" />
5
+ <orderEntry type="inheritedJdk" />
6
+ <orderEntry type="sourceFolder" forTests="false" />
7
+ </component>
8
+ </module>
.idea/vcs.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="VcsDirectoryMappings">
4
+ <mapping directory="$PROJECT_DIR$" vcs="Git" />
5
+ </component>
6
+ </project>
README.md ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # nlp_corpus
2
+ ## 1 中文实体识别
3
+ - open_ner_data为网上开放的ner数据集,已将不同的数据格式转化为统一的数据格式,格式转换脚本为data_transfer.py
4
+ ### 1.1 boson数据集
5
+ ### 1.2 clue细粒度实体识别数据集
6
+ ### 1.3 微软实体识别数据集
7
+ ### 1.4 人民网实体识别数据集(98年)
8
+ ### 1.5 中药说明书实体识别数据集(“万创杯”中医药天池大数据竞赛)
9
+ ### 1.6 视频_音乐_图书数据集
10
+ ### 1.7 微博数据集
open_ner_data/2020_ccks_ner/chip_2020_1_test1/test1.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/2020_ccks_ner/chip_2020_1_train/train_data.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/2020_ccks_ner/chip_2020_1_train/val_data.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/2020_ccks_ner/中文医学文本命名实体识别_test2/中文医学文本命名实体识别_test2/test2.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/MSRA/msra.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01383bca37db7e2902d98f15d6a51842e143f3ef47b33db297788a1934de9950
3
+ size 15374320
open_ner_data/MSRA/msra_1000.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/MSRA/msra_test.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/MSRA/msra_train.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40734813d10dfe333055daedbeb7ce3ba2398d1cd1d640144a6a11cf194f0a89
3
+ size 13251833
open_ner_data/ResumeNER/dev.char.bmes ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/ResumeNER/dev.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/ResumeNER/test.char.bmes ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/ResumeNER/test.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/ResumeNER/train.char.bmes ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/ResumeNER/train.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/__init__.py ADDED
File without changes
open_ner_data/boson/boson.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/boson/boson_1000.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/cluener_public/dev.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/cluener_public/test.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/cluener_public/train.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/cluener_public/train_1000.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/data_transfer.py ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #coding=utf-8
2
+ import numpy as np
3
+ import json
4
+ import string
5
+ import os
6
+ import re
7
+ from collections import defaultdict
8
+
9
+ # 将人民日报数据集进行转换
10
+ def transfer_data_0(source_file, target_file):
11
+ '''
12
+ 人民日报数据格式:
13
+ 1 迈向 vt O _
14
+ 2 充满 vt O _
15
+ 3 希望 n O _
16
+ 4 的 ud O _
17
+ 5 新 a O _
18
+ 6 世纪 n O _
19
+ 7 —— wp O _
20
+ 8 一九九八年新年 t DATE _
21
+ 9 讲话 n O _
22
+ 10 ( wkz O _
23
+ '''
24
+ with open(source_file) as f, open(
25
+ target_file, "w+", encoding="utf-8") as g:
26
+ text = ""
27
+ entity_list = [] # {"entity_index": {"begin": 21, "end": 25}, "entity_type": "影视作品", "entity": "喜剧之王"}
28
+ lines = 0
29
+ for word_line in f:
30
+ if word_line != "\n": # 是句子的词
31
+ # print(word_line)
32
+ word_split = word_line.strip().split("\t")
33
+ # print(word_split)
34
+ if word_split[3] != "O":
35
+ entity_list.append({"entity_index": {"begin": len(text), "end": len(text + word_split[1])},
36
+ "entity_type": word_split[3], "entity": word_split[1]})
37
+ text += word_split[1]
38
+ else: # 句子的结尾
39
+ g.write(json.dumps({"text": text, "entity_list": entity_list}, ensure_ascii=False) + "\n")
40
+ lines += 1
41
+ text = ""
42
+ entity_list = []
43
+ if lines == 1000:
44
+ break
45
+ print("共有{}行".format(lines))
46
+
47
+
48
+ # 将平常ner标注(微博、微软)数据转化为项目所需数据格式
49
+ def transfer_data_1(source_file, target_file):
50
+ # 同时满足BIEO标注、BIO标注和BMESO标注
51
+ '''
52
+
53
+ 男 B-PER.NOM /// B-PER
54
+ 女 B-PER.NOM
55
+ 必 O
56
+ 看 O
57
+ 的 O
58
+ 微 O
59
+ 博 O
60
+ 花 O
61
+ 心 O
62
+
63
+ 我 O
64
+ 参 O
65
+ 与 O
66
+ 了 O
67
+ 南 B-GPE.NAM
68
+ 都 I-GPE.NAM
69
+ 标注类型转化为要求的数据格式
70
+ '''
71
+ with open(source_file, errors="ignore") as f, open(target_file, "w+", encoding="utf-8") as g:
72
+ text = ""
73
+ entity_list = [] # {"entity_index": {"begin": 21, "end": 25}, "entity_type": "影视作品", "entity": "喜剧之王"}
74
+ lines = 0
75
+ words_start = 0 # 词的开始边界
76
+ words_end = 0 # 词的结束边界
77
+ words_bool = None # 是否存在未加入的新词,存在的话设置为词的类型,默认没有
78
+ for word_line in f:
79
+ word_line = word_line.strip()
80
+ word_split = word_line.strip().split(" ")
81
+ if '' in word_split:
82
+ word_split.remove('')
83
+ if word_split: # 是句子的词
84
+ if len(word_split) == 1:
85
+ word_split.insert(0, "、")
86
+ # print(word_split)
87
+ if (word_split[1].startswith("B") or word_split[1].startswith("S")) and not word_split[1].endswith("NOM"):
88
+ if words_bool:
89
+ entity_list.append({"entity_index": {"begin": words_start, "end": words_start + words_end},
90
+ "entity_type": words_bool,
91
+ "entity": text[words_start:words_start + words_end]})
92
+ words_start = len(text)
93
+ words_end = 1
94
+ if "." in word_split[1]:
95
+ words_bool = word_split[1][2:word_split[1].rfind(".")+1]
96
+ else:
97
+ words_bool = word_split[1][2:]
98
+ elif (word_split[1].startswith("M") or word_split[1].startswith("I") or word_split[1].startswith("E")) and not word_split[1].endswith("NOM"):
99
+ words_end += 1
100
+ elif word_split[1] == "O" and words_bool:
101
+ entity_list.append({"entity_index": {"begin": words_start, "end": words_start + words_end},
102
+ "entity_type": words_bool,
103
+ "entity": text[words_start:words_start + words_end]})
104
+ words_bool = None
105
+ text += word_split[0]
106
+ else: # 句子的结尾
107
+ if words_bool:
108
+ entity_list.append({"entity_index": {"begin": words_start, "end": words_start + words_end},
109
+ "entity_type": words_bool,
110
+ "entity": text[words_start:words_start + words_end]})
111
+ words_bool = None
112
+ g.write(json.dumps({"text":text,"entity_list":entity_list}, ensure_ascii=False) + "\n")
113
+ lines += 1
114
+ text = ""
115
+ entity_list = []
116
+ # if lines == 1000:
117
+ # break
118
+ print("共有{}行".format(lines))
119
+ #
120
+ # transfer_data_1("/home/liguocai/model_py36/data_diversity/product_testdata_kg/open_ner_data/source_data/ChineseNLPCorpus/NER/MSRA/dh_msra.txt",
121
+ # "/home/liguocai/model_py36/data_diversity/product_testdata_kg/open_ner_data/msra_1000.txt")
122
+ # transfer_data_1("/home/liguocai/model_py36/data_diversity/product_testdata_kg/open_ner_data/video_music_book_datasets/data/train.txt",
123
+ # "/home/liguocai/model_py36/data_diversity/product_testdata_kg/open_ner_data/video_music_book_datasets/train.txt")
124
+ # transfer_data_1("/home/liguocai/model_py36/data_diversity/product_testdata_kg/open_ner_data/video_music_book_datasets/data/valid.txt",
125
+ # "/home/liguocai/model_py36/data_diversity/product_testdata_kg/open_ner_data/video_music_book_datasets/dev.txt")
126
+ # transfer_data_1("/home/liguocai/model_py36/data_diversity/product_testdata_kg/open_ner_data/video_music_book_datasets/data/test.txt",
127
+ # "/home/liguocai/model_py36/data_diversity/product_testdata_kg/open_ner_data/video_music_book_datasets/test.txt")
128
+ # transfer_data_1("./ResumeNER/train.char.bmes", "./ResumeNER/train.txt")
129
+ # transfer_data_1("./ResumeNER/dev.char.bmes", "./ResumeNER/dev.txt")
130
+ # transfer_data_1("./ResumeNER/test.char.bmes", "./ResumeNER/test.txt")
131
+
132
+
133
+
134
+ # boson ner数据格式转化
135
+ def transfer_data_2(source_file, target_file):
136
+ '''
137
+ boson数据格式:
138
+ 完成!!!!!!!!!!给大家看看 {{time:今天}}{{person_name:吕小珊}}要交大家 新手也可以简单上手!!! 上学也不会觉得奇怪的妆感喔^^ 大家加油喔~~!!!!!你的喜欢
139
+ 会是{{person_name:吕小珊}} 最你的喜欢 会是{{person_name:吕小珊}} 最大的动力唷~~!!! 谢谢大家~~ 大的动力唷~~!!! 谢谢大家~~
140
+ '''
141
+ p = re.compile("({{.*?:.*?}})")
142
+ p_ = re.compile("{{.*?:(.*?)}}")
143
+ length = 0
144
+ with open(source_file) as f, open(target_file, "w+", encoding="utf-8") as g:
145
+ for s in f:
146
+ total_de = 0
147
+ entity_list = []
148
+
149
+ for item1, item2 in zip(p.finditer(s), p_.findall(s)):
150
+ # 替换
151
+ start = item1.start() - total_de
152
+ ss = s[start:item1.end() - total_de]
153
+ total_de += len(ss) - len(item2)
154
+ s = s.replace(ss, item2, 1)
155
+ item1.start() - total_de
156
+ entity_list.append({"entity_index": {"begin": start, "end": start + len(item2)},
157
+ "entity_type": ss[2:len(ss) - 3 - len(item2)], "entity": item2})
158
+
159
+ g.write(json.dumps({"text": s, "entity_list": entity_list}, ensure_ascii=False)+"\n")
160
+ length += 1
161
+ if length == 1000:
162
+ break
163
+ print("共有{}行".format(length))
164
+ # transfer_data_1("/home/liguocai/model_py36/data_diversity/product_testdata_kg/open_ner_data/source_data/ChineseNLPCorpus/NER/boson/origindata.txt",
165
+ # "/home/liguocai/model_py36/data_diversity/product_testdata_kg/open_ner_data/boson_1000.txt")
166
+
167
+
168
+ # clue数据集转化
169
+ def transfer_data_3(source_file, target_file):
170
+ '''
171
+ 源数据:
172
+ {"text": "她写道:抗战胜利时我从重庆坐民联轮到南京,去中山陵瞻仰,也到秦淮河去过。然后就去北京了。", "label": {"address": {"重庆": [[11, 12]], "南京": [[18, 19]],
173
+ "北京": [[40, 41]]}, "scene": {"中山陵": [[22, 24]], "秦淮河": [[30, 32]]}}}
174
+ '''
175
+ with open(source_file) as f, open(target_file, "w+", encoding="utf-8") as g:
176
+ length = 0
177
+ for line in f:
178
+ line_json = json.loads(line)
179
+ text = line_json['text']
180
+ entity_list = []
181
+
182
+ if "label" in line_json.keys():
183
+ for label, e in line_json['label'].items():
184
+ for e_name, e_index in e.items():
185
+ entity_list.append({"entity_index": {"begin": e_index[0][0], "end": e_index[0][1]+1},
186
+ "entity_type": label, "entity": e_name})
187
+
188
+ g.write(json.dumps({"text": text, "entity_list": entity_list}, ensure_ascii=False) + "\n")
189
+ length += 1
190
+ if length == 1000:
191
+ break
192
+
193
+ print("共有{}行".format(length))
194
+
195
+ # transfer_data_3('./open_ner_data/cluener_public/dev.json', './open_ner_data/cluener_public/dev.txt')
196
+ # transfer_data_3('./open_ner_data/cluener_public/train.json', './open_ner_data/cluener_public/train_1000.txt')
197
+ # transfer_data_3('./open_ner_data/cluener_public/test.json', './open_ner_data/cluener_public/test.txt')
198
+
199
+ # 将brat标注的文件转化为所需格式
200
+ def transfer_data_4(source_file, test=False):
201
+ """
202
+ T1 DRUG_EFFICACY 1 5 补肾益肺
203
+ T2 DRUG_EFFICACY 6 10 益精助阳
204
+ T3 DRUG_EFFICACY 11 15 益气定喘
205
+ T4 SYMPTOM 23 27 精神倦怠
206
+ T5 SYNDROME 35 37 阴虚
207
+ T6 SYMPTOM 37 39 咳嗽
208
+ T7 SYMPTOM 39 41 体弱
209
+ """
210
+
211
+ lines = 0
212
+
213
+ map_dict = {"DRUG":"药品",
214
+ "DRUG_INGREDIENT":"药物成分",
215
+ "DISEASE":"疾病",
216
+ "SYMPTOM":"症状",
217
+ "SYNDROME":"证候",
218
+ "DISEASE_GROUP":"疾病分组",
219
+ "FOOD":"食物",
220
+ "FOOD_GROUP":"食物分组",
221
+ "PERSON_GROUP":"人群",
222
+ "DRUG_GROUP":"药品分组",
223
+ "DRUG_DOSAGE":"药物剂型",
224
+ "DRUG_TASTE":"药物性味",
225
+ "DRUG_EFFICACY":"中药功效"}
226
+
227
+ if not test:
228
+ file_list = []
229
+ for file_name in os.listdir(source_file):
230
+ if file_name.endswith(".ann"):
231
+ file_list.append(file_name[:-3])
232
+ with open(source_file[:source_file.rfind("/")+1] + "train.txt", "w+", encoding="utf-8") as f:
233
+ for file_name in file_list:
234
+ with open(os.path.join(source_file,file_name+"ann")) as w, open(os.path.join(source_file,file_name+"txt")) as g:
235
+ text = g.read()
236
+ entity_list = []
237
+ for line in w:
238
+ _, entity_type, begin, end, entity = line.strip().split()
239
+ entity_type, begin, end = map_dict[entity_type], int(begin), int(end)
240
+ entity_list.append({"entity_index": {"begin": begin, "end": end},
241
+ "entity_type": entity_type, "entity": entity})
242
+ f.write(json.dumps({"text": text, "entity_list": entity_list}, ensure_ascii=False) + "\n")
243
+ lines += 1
244
+ else:
245
+ with open(source_file[:source_file.rfind("/") + 1] + "test.txt", "w+", encoding="utf-8") as f:
246
+ for file in os.listdir(source_file):
247
+ with open(os.path.join(source_file,file)) as g:
248
+ text = g.read()
249
+ f.write(json.dumps({"text": text, "entity_list": []}, ensure_ascii=False) + "\n")
250
+ lines += 1
251
+
252
+ print("共有数据{}行".format(lines))
253
+
254
+ # transfer_data_4("./open_ner_data/tianchi_yiyao/train", test=False)
255
+ # transfer_data_4("./open_ner_data/tianchi_yiyao/chusai_xuanshou", test=True)
256
+
257
+ # 依渡云数据集格式转化
258
+ def transfer_data_5(source_file, target_file):
259
+ """
260
+ {"originalText": ",患者7月前因“下腹腹胀伴反酸”至我院就诊,完善相关检查,诊断“胃体胃窦癌(CT4N2M0,IIIB期)”,
261
+ 建议先行化疗,患者及家属表示理解同意 ,遂于2015-5-26、2015-06-19、2015-07-13分别予XELOX
262
+ (希罗达 1250MG BID PO D1-14+奥沙利铂150MG IVDRIP Q3W)化疗三程,过程顺利,无明显副反应,
263
+ 后于2015-08-24在全麻上行胃癌根治术(远端胃大切),术程顺利,术后预防感染支持对症等处理。,术后病理示:
264
+ 胃中至低分化管状腺癌(LAUREN,分型:肠型),浸润至胃壁浆膜上层,可见神经束侵犯,未见明确脉管内癌栓;
265
+ 肿瘤消退分级(MANDARD),:TRG4;网膜组织未见癌;LN(-);YPT3N0M0,IIA期。术后恢复可,于2015-10-10、
266
+ 开始采用XELOX化疗方案化疗(奥沙利铂150MG Q3W IVDRIP+卡培他滨1250MGBID*14天)一程,过程顺利。
267
+ 现为行上程化疗来我院就诊,拟“胃癌综合治疗后” 收入我科。自下次出院以来,患者精神可,食欲尚可,大小便正常,
268
+ 体重无明显上降。", "entities":
269
+ [{"end_pos": 10, "label_type": "解剖部位", "overlap": 0, "start_pos": 8},
270
+ {"end_pos": 11, "label_type": "解剖部位", "overlap": 0, "start_pos": 10},
271
+ {"label_type": "疾病和诊断", "overlap": 0, "start_pos": 32, "end_pos": 52},
272
+ {"end_pos": 118, "label_type": "药物", "overlap": 0, "start_pos": 115},
273
+ {"end_pos": 143, "label_type": "药物", "overlap": 0, "start_pos": 139},
274
+ {"label_type": "手术", "overlap": 0, "start_pos": 193, "end_pos": 206},
275
+ {"label_type": "疾病和诊断", "overlap": 0, "start_pos": 233, "end_pos": 257},
276
+ {"label_type": "解剖部位", "overlap": 0, "start_pos": 261, "end_pos": 262},
277
+ {"end_pos": 374, "label_type": "药 物", "overlap": 0, "start_pos": 370},
278
+ {"end_pos": 395, "label_type": "药物", "overlap": 0, "start_pos": 391},
279
+ {"label_type": "疾病和诊断", "overlap": 0, "start_pos": 432, "end_pos": 439}]}
280
+ """
281
+ with open(source_file, encoding="utf-8-sig") as f, open(target_file, "w+", encoding="utf-8") as g:
282
+ length = 0
283
+ error = 0
284
+ for line in f:
285
+ try:
286
+ line_json = json.loads(line)
287
+ entity_list = []
288
+ text = line_json["originalText"]
289
+ for entities in line_json["entities"]:
290
+ entity_list.append({"entity_index": {"begin": entities["start_pos"],
291
+ "end": entities["end_pos"]},
292
+ "entity_type": entities["label_type"],
293
+ "entity": text[entities["start_pos"]:entities["end_pos"]]})
294
+ g.write(json.dumps({"text": text, "entity_list": entity_list}, ensure_ascii=False) + "\n")
295
+ length += 1
296
+ except:
297
+ error += 1
298
+ print("错误:{}个".format(error))
299
+ print("共有{}行".format(length))
300
+
301
+
302
+ # 统计实体类型和个数
303
+ def sta_entity(file, num=None):
304
+ sta_dict = defaultdict(int)
305
+ with open(file, encoding="utf-8") as f:
306
+ data_list = list(f.readlines())
307
+
308
+ length = len(data_list) if not num else len
309
+
310
+ entity_type = []
311
+ for line in data_list[:length]:
312
+ text_e = json.loads(line)
313
+ for e in text_e["entity_list"]:
314
+ if e["entity_type"] not in entity_type:
315
+ entity_type.append(e["entity_type"])
316
+ sta_dict[e["entity_type"]] += 1
317
+
318
+ entity_type.sort()
319
+ print("实体类型:",entity_type)
320
+ print("实体类型及个数:", sta_dict)
321
+
322
+
323
+ print("train1")
324
+ # transfer_data_5("yidu-s4k/subtask1_training_part1.txt", "yidu-s4k/train1.txt")
325
+ sta_entity("yidu-s4k/train1.txt")
326
+ print("train2")
327
+ transfer_data_5("yidu-s4k/subtask1_training_part2.txt", "yidu-s4k/train2.txt")
328
+ sta_entity("yidu-s4k/train2.txt")
329
+ print("test")
330
+ transfer_data_5("yidu-s4k/subtask1_test_set_with_answer.json", "yidu-s4k/test.txt")
331
+ sta_entity("yidu-s4k/test.txt")
open_ner_data/people_daily/people_daily_ner.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d239843ff28d0012cd53c7a6c6fd7dbdcaf1e2e407ea2e1da4cc88009b1dd6d
3
+ size 11709985
open_ner_data/people_daily/people_daily_ner_1000.txt ADDED
The diff for this file is too large to render. See raw diff
 
open_ner_data/tianchi_yiyao/chusai_xuanshou/1000.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 灌肠用。取本品50ml,将药液加温至38~39°C,臀部抬高10cm插管,肛管插入深度10~15cm。肛管插入后,讲管端套的熟料瓶颈部,加压挤入即可。灌入后膝胸卧位30分钟。每日一次,两周为一个疗程。月经干净后3~5天开始用药。 红虎灌肠液(50毫升装)-安徽天洋药业 清热解毒,化湿除带,祛瘀止痛,散结消癥,用于慢性盆腔炎所致小腹疼痛,腰骶酸痛,带下量多,或有发热 安徽天洋药业有限公司
open_ner_data/tianchi_yiyao/chusai_xuanshou/1001.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 云南永安制药有限公司 开水冲服。一次10克,一日3次。 孕妇禁用。糖尿病患者禁服。 每袋装12g(相当于原药材8g)。 非处方药物(甲类) 补血,活血,通络。用于月经量少、后错,血虚萎黄后错,血虚萎黄,风湿痹痛,肢体麻木糖尿病 尚不明确。
open_ner_data/tianchi_yiyao/chusai_xuanshou/1002.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 北京同仁堂科技发展股份有限公司制药厂 1.忌食辛辣,少进油腻。 2.感冒发热病人不宜服用。 3.有高血压、心脏病、肝病、糖尿病、肾病等慢性病严重者应在医师指导下服用。 4.伴有月经紊乱者,应在医师指导下服用。 5.眩晕症状较重者,应及时去医院就诊。 6.服药2周症状无缓解,应去医院就诊。 7.对本品过敏者禁用,过敏体质者慎用。 8.本品性状发生改变时禁止使用。 9.请将本品放在儿童不能接触的地方。 10.如正在使用其他药品,使用本品前请咨询医师或药师。 本品为浅黄色至棕黄色颗粒,气微香,味微苦。 滋养肝肾、宁心安神。用于更年期综合症属阴虚肝旺症,症见烘热汗出,头晕耳鸣,失眠多梦,五心烦热,腰背酸痛,大便干燥,心烦易怒,舌红少苔,脉弦细或弦细 开水冲服。一次1袋(12g),一日3次。 如与其他药物同时使用可能会发生药物相互作用,详情请咨询医师或药师。 12g*10袋/盒 用于更年期综合症属阴虚肝旺症 铝塑复合膜包装,每袋装12克,每盒装10袋。 非处方药物(甲类),中药保护品种二级 12g*10袋/盒 用于更年期综合症属阴虚肝旺更年期综合症气微香,味微苦。
open_ner_data/tianchi_yiyao/chusai_xuanshou/1003.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 口服。一次3粒,一日3次,3个月经周期为一疗程。 吉林省东北亚药业股份有限公司 月经期暂停服用。 用于子宫肌瘤气滞血瘀,症见经期延长,经量过多,经色紫黯有块,小腹或乳房胀痛等。 偶见服药初期胃脘不适。 如与其他药物同时使用可能会发生药物相互作用,详情请咨询医师或药师。 本品为硬胶囊,内容物为棕褐色的颗粒;气微腥,微苦。 铝塑泡罩包装,12粒*2板/盒。 每粒装0.45g 详见说明书 软坚散结?钛觯稣瘫尽S糜谧庸×觯脱?症见经期延长,经量过多,经色紫黯有块,小腹或乳房胀痛
open_ner_data/tianchi_yiyao/chusai_xuanshou/1004.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 滋阴清热,健脾养血。用于放环后引起的出血,月经提前量多或月经紊乱,腰骶酸痛,下腹坠痛,心烦易怒,手足心热 陕西步长高新制药有限公司 口服,一次5片,一日2次。 请遵医嘱。 尚不明确。 0.46g*3*15片
open_ner_data/tianchi_yiyao/chusai_xuanshou/1005.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 如与其他药物同时使用可能会发生药物相互作用,详情请咨询医师或药师。 开水冲服,一次14克,一日3次。 养血,调经,止痛。用于月经量少、后错,经期腹痛 健民集团叶开泰国药(随州)有限公司 1,忌食生冷食物。2,患有其他疾病者,应在医师指导下服用。3,平素月经正常,突然出现月经过少,或经期错后,应去医院就诊。4,治疗痛经,宜在经前3~5天开始服药,连服一周,如有生育要求应在医师指导下服用。5,服药后痛经不减轻,或重度痛经者,应到医院诊治。6,服药2周症状无缓解,应去医院就诊。7,对本品过敏者禁用,过敏体质者慎用。8,本品性状发生改变时禁止使用。9,请将本品放在儿童不能接触的地方。10,如正在使用其他药品,使用本品前请咨询医师或药师。 本品为妇科月经不调类非处方药药品。 养血,调经,止痛。用于月经量少、后错,经期腹痛。 养血,调经,止痛。用于月经量少、后错,经期腹痛 14g*5袋 非处方药物(乙类),国家医保目录(乙类) 孕妇禁用。糖尿病者禁服。
open_ner_data/tianchi_yiyao/chusai_xuanshou/1006.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 每瓶装100ml;每瓶装200ml 尚不明确。 外用。用稀释10%溶液擦洗,重症可加大浓度;用牛尾线消毒棉球蘸取适量浓溶液置于阴道中治疗阴道炎,一日2次。 清热燥湿、止痒,广谱抗菌、抗病毒,抗炎镇痛抑制变态反应,用于各种细菌性、霉菌性、滴虫性外阴炎、阴道炎所致妇女阴部瘙痒、红肿,白带过多 陕西关爱制药有限公司 用于各种细菌性、霉菌性、滴虫性外阴炎、阴道炎所致妇女阴部瘙痒、红肿,白带过多
open_ner_data/tianchi_yiyao/chusai_xuanshou/1007.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 滋阴清热,固经止带。用于阴虚血热,月经先期,经血量多、色紫黑 口服。一次6克,一日2次。 非处方药物(甲类),国家医保目录(乙类) 上海和黄药业有限公司
open_ner_data/tianchi_yiyao/chusai_xuanshou/1008.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 如与其他药物同时使用可能会发生药物相互作用,详情请咨询医师或药师。 清热解毒、燥湿杀虫,收敛止痒。用于各种病困所致的阴道炎 尚不明确。 2.5g*5粒 阴道给药,每次1粒,一日1次。睡前将栓剂放入阴道深处。 本品如遇高温天气,可能出现软化现象,只需放入阴凉环境或冰箱冷藏室中,恢复原状即可使用,对产品疗效无影响。 用于各种病因所致的阴道炎症 PVC/LDPE药用复合硬片包装;每盒5粒。 通药制药集团股份有限公司 尚不明确。 本品为紫红色的栓剂。
open_ner_data/tianchi_yiyao/chusai_xuanshou/1009.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 株洲千金药业股份有限公司 阴道给药。晚上临睡前将阴道给药器中的药物送入阴道深处。每次月经干净3天后开始用药,一次1支,一日一次,每个月经周期连续使用10天,持续两个月经周期为一个疗程。 本品为棕褐色凝胶;气芳香。 清热燥湿,祛瘀生肌。用于慢性宫颈炎祛瘀生肌。用于慢性宫颈炎之宫颈糜烂、中医辨证属于湿热瘀阻所致者,症见带下量多、色黄或白,腰腹坠胀色黄或白,腰腹坠胀,口苦咽干,舌红苔黄腻,脉弦或滑 偶见给药局部出现瘙痒、皮疹或疼痛,一般停药后可自行消失。 4g*3支(千金) 1.过敏体质者慎用。2.使用给药器勿用力太过,以免伤及阴道后穹窿等部位,3.本品适用范围不包括宫颈息肉,宫颈粘膜炎、宫颈糜囊肿,宫颈肥大患者,4.请将本品放在儿童不能接触的地方。 1.孕妇及月经期妇女禁用。2,对本品过敏者禁用。3.本品性状发生改变时禁用。 聚丙烯预灌封阴道用给药器包装。3支/盒。
open_ner_data/tianchi_yiyao/chusai_xuanshou/1010.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 山西澳迩药业有限公司 活血、祛瘀、止痛。用于产后恶露不行,少腹疼痛,也可试用于上节育环后引起的阴道流血,月经过多月经过多 如与其他药物同时使用可能会发生药物相互作用,详情请咨询医师或药师。 6g*12袋 1.收缩子宫:新生化颗粒使DNA含量和子宫利用葡萄糖能力增加,促进子宫蛋白质合成及子宫增生,以促进子宫收缩,从而起到止血并排出瘀血的目的。实验室研究表明,新生化颗粒能明显增加大鼠离体子宫的收缩张力、收缩频率和收缩振幅,且呈剂量依赖性关系。冲洗药液后,子宫活动仍可恢复到正常状态。2.镇痛:实验室研究表明,新生化颗粒能明显减少大鼠扭体次数。3.抗血小板凝聚及抗血栓抗血小板凝聚镇痛:实验室研究表明,新生化颗粒能明显减少大鼠扭体次数。3.抗血小板凝聚及抗血栓作用:新生化颗粒能抑制血小板聚集促进剂(H-SHT)产生。血液流变学表明,新生化颗粒通过降低血浆纤维蛋白原浓度,增加血小板细胞表面电荷,促进细胞解聚,降低血液粘度,达到抗血栓形成的作用。从而使瘀血不易凝固而利于排出。4.造血和抗贫血作用:新生化颗粒能促进血红蛋白(Hb)和红细胞(RBC)的生成。对造血干细胞(CFU&mdash;S)增值有显著的刺激作用,并能促进红系细胞分化。粒单细胞(CFU&mdash;D)、红系(BFU&mdash;E)祖细胞的产率均有明显升高作用。新生化颗粒同时还能抑制补体(c3b)与红细胞膜结合,降低补体溶血功能。5.改善微循环:增加子宫毛细血管流量,促进子宫修复。6.抗炎:新生化颗粒有很好的抗炎抑菌作用。体外试验表明,新生化颗粒对痢疾杆菌、大肠杆菌、绿脓杆菌、变形杆菌和金黄色葡萄球菌均有很好的抑菌作用。 热水冲服,一次1袋,一日2-3次。 用于产后恶露不行,少腹疼痛,也可用于上节育环后引起的阴道流血,月经过多 国家医保目录(乙类)
open_ner_data/tianchi_yiyao/chusai_xuanshou/1011.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 尚不明确。 每盒装10袋。 孕妇慎用。 本品为棕色或棕褐色颗粒;味甜、微苦味甜、微苦。 福建省泉州罗裳山制药厂 6g*10袋 口服。每次12g(2袋),一日2次。 清热凉血,消肿止痛。用于盆腔炎、附件炎、子宫内膜炎等引起的带下、腹痛 孕妇慎用。
open_ner_data/tianchi_yiyao/chusai_xuanshou/1012.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 口服,一次2片,一日2次。 疏肝活血,调经止痛。用于痛经、月经量少、后错属气滞血瘀疏肝活血,调经止痛 用于痛经、月经量少、后错属气滞血瘀证者 1.忌食生冷食物、不宜洗凉水澡。<br/>2.患有其他疾病者,应在医师指导下服用。<br/>3.平素月经正常,突然出现月经量少,或月经错后,或阴道不规则出血应去医院就诊。<br/>4.经期或经后小腹隐痛喜按,痛经伴月经过多者均不宜选用。<br/>5.治疗痛经,宜在经前3~5天开始服药,连服1周。如有生育要求应在医师指导下服用。<br/>6.服药后痛经不减轻,或重度痛经者,应到医院诊治。<br/>7.对本品过敏者禁用,过敏体质者慎用。<br/>8.本品性状发生改变时禁止使用。<br/>9.请将本品放在儿童不能接触的地方。<br/>10.如正在服用其他药品,使用本品前请咨询医师或药师。 合肥今越制药有限公司 铝塑包装。12片/板×2板/盒。 0.5克*24片/盒 片剂(薄膜衣) 如与其他药物同时使用可能会发生药物相互作用,详情请咨询医师或药师。 孕妇禁用。 本品为薄膜衣片,除去包衣后显棕色;气微,味微苦。
open_ner_data/tianchi_yiyao/chusai_xuanshou/1013.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 温经散寒,活血止痛,主治寒瘀证所致或经期小腹疼痛,经血量少,经行不畅,血色紫暗有块,块下痛减,乳房胀痛,四肢不温或畏寒,小腹发冷,带下量多,舌质黯或有瘀点,苔白,脉沉紧等症.适用于原发性痛经 口服54;一次5粒54;一日3次54;月经前开始服药54;服用15天.连用3个月经周期. 尚不明确。 每粒装0.5g 陕西摩美得制药有限公司
open_ner_data/tianchi_yiyao/chusai_xuanshou/1014.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 本品为黑褐色颗粒;气香,味甜。 株洲千金药业股份有限公司 忌生冷辛辣,孕妇禁服。 开水冲服,一次12g,一日2次。 12g*10袋 补益气血,祛瘀生新。用于气血两虚兼血瘀证产后腹痛 动物试验表明,补血益母颗粒能使失血性贫血小鼠RBC、Hb恢复至正常水平;能对抗环磷酰胺损伤骨髓造血系统所致的血细胞减少,能使WBC、HB、RBC明显升高;且对环磷酰胺所致小鼠脾脏萎缩有明显的对抗作用;它对小鼠既具有活血作用又能缩短小鼠的凝血时间;提高小鼠巨噬细胞的吞噬功能和促进小鼠溶血素抗体的形成;促进小鼠腹腔绵羊红细胞的吸收;但对正常大鼠离体子宫平滑肌未显示出作用。 12g*10袋/盒。 1.忌食寒凉、生冷食物。2.感冒时不宜服用。3.平素月经正常,突然出现月经量少,或月经错后,或阴道不规则出血应去医院就诊。4.按照用法用量服用,长期服用应向医师咨询。5.服药二周症状无改善,应去医院就诊。6.对本品过敏者禁用,过敏体质者慎用。7.本品性状发生改变时禁止使用。8.请将本品放在儿童过敏体质者慎用。7.本品性状发生改变时禁止使用。8.请将本品放在儿童不能接触的地方。9.如正在使用其他药品,使用本品前请咨询医师或药师。 尚不明确。
open_ner_data/tianchi_yiyao/chusai_xuanshou/1015.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 15g*10袋 活血调经。用于月经量少,产后腹痛活血调经本品过敏者心脏病 祛瘀生新。用于月经量少、后错,经来腹痛 本品为棕黄色至棕褐色的颗粒;昧甜、微苦。 尚不明确。 孕妇禁用。 15g*10袋/盒。 四川逢春制药有限公司 1.忌食生冷食物。 2.气血两虚生冷食物。 2.气血两虚引起的月经量少,色淡质稀,伴有头晕心悸,疲乏无力等不宜选用本药。3.有高血压、心脏病、肾病、糖尿病或正在接受其他治疗的患者均应在医师指导下服用。 4.平素月经量正常,突然出现经量少,须去医院就诊。 5.青春期少女及更年期妇女应在医师指导下服药。 6.各种流产后腹痛伴有阴道出血,服药一周无效者应去医院就诊。7.按照用法用量服用,服药过程中出现不良反应应停药,并向医师咨询。 8.对本品过敏者禁用。 开水冲服,一次1袋,一日2次。 如与其他药物同时使用可能会发生药物相互作用,详情请咨询医师或药师。 非处方药物(乙类),国家基本药物目录(2012)
open_ner_data/tianchi_yiyao/chusai_xuanshou/1016.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 本品对前列腺F2a所致的大鼠子宫痉挛性收缩有一定的拮抗作用。此外,还有降低全血比粘度、血浆比粘度及红细胞压积,降低血小板释放因子等作用。 开水冲服。一次1袋(12g),一日2次。月经前3天开始服药,连服7天或遵医嘱,三个经期为一个疗程。 铝塑复合膜,每袋装12g。 国家医保目录(乙类) 12g*6袋 活血化瘀、温经通脉、理气止痛。用于气滞寒凝血瘀活血化瘀、温经通脉、理气止痛。用于气滞寒凝血瘀所致的痛经。证见行经小腹胀痛或冷痛,经行不畅冷痛,经行不畅,经血暗有血块,或乳房胀痛,或胸闷,或手足不温,舌暗或有瘀斑 尚不明确。 北京长城制药厂 内血虚内热者忌用。 本品为棕色的颗粒;气微、味甜、微苦。 月经过多,月经提前者慎用。忌生冷。