|
import os, argparse, sys, pickle, shutil, subprocess |
|
from functools import partial |
|
import torch |
|
from torch import Tensor |
|
import torch.nn.functional as F |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
import torch.distributed |
|
import pathlib, datasets |
|
import numpy as np |
|
from transformers import AutoTokenizer, AutoModel |
|
from datasets import load_dataset, concatenate_datasets |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
DOC_ID_KEY = 'docid' |
|
DOC_KEY = 'text' |
|
QUERY_ID_KEY = 'query_id' |
|
QUERY_KEY = 'query' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def last_token_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) |
|
if left_padding: |
|
return last_hidden_states[:, -1] |
|
else: |
|
sequence_lengths = attention_mask.sum(dim=1) - 1 |
|
batch_size = last_hidden_states.shape[0] |
|
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] |
|
|
|
|
|
def average_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) |
|
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] |
|
|
|
|
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
def embed_corpus(x, model, tokenizer, prefix, pooling, append_eos_token,sentence, max_length=512, normalize=True): |
|
doc = x[DOC_KEY] |
|
docid = x[DOC_ID_KEY] |
|
|
|
doc = [f'{prefix}{q}' for q in doc] |
|
if sentence: |
|
embeddings = model.encode(doc, normalize_embeddings=True, batch_size=len(doc), device=rank) |
|
encoding = embeddings |
|
return { |
|
'encoding' : encoding, |
|
'id' : docid |
|
} |
|
|
|
if not append_eos_token: |
|
batch_dict = tokenizer(doc, max_length=max_length, padding=True, truncation=True, return_tensors='pt').to(rank) |
|
else: |
|
batch_dict = tokenizer([d+tokenizer.eos_token for d in doc], max_length=max_length, padding=True, truncation=True, return_tensors='pt').to(rank) |
|
|
|
with torch.no_grad(): |
|
with torch.cuda.amp.autocast(): |
|
outputs = model(**batch_dict) |
|
if pooling == 'eos': |
|
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
elif pooling == 'average': |
|
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
elif pooling == 'cls': |
|
embeddings = outputs.last_hidden_state[:, 0] |
|
elif pooling == 'mean': |
|
embeddings = mean_pooling(outputs, batch_dict['attention_mask']) |
|
else: |
|
raise Exception("Pooling not defined") |
|
if normalize: |
|
encoding = F.normalize(embeddings, p=2, dim=1).cpu().detach().numpy() |
|
else: |
|
encoding = embeddings.cpu().detach().numpy() |
|
return { |
|
'encoding' : encoding, |
|
'id' : docid |
|
} |
|
|
|
def embed_queries(x, model, tokenizer, prefix, pooling, append_eos_token, sentence, max_length=512, normalize=True,): |
|
query = x[QUERY_KEY] |
|
query_id = x[QUERY_ID_KEY] |
|
|
|
query = [f'{prefix}{q}' for q in query] |
|
if sentence: |
|
embeddings = model.encode(query, normalize_embeddings=True, batch_size=len(query), device=rank) |
|
encoding = embeddings |
|
return { |
|
'encoding' : encoding, |
|
'id' : query_id |
|
} |
|
|
|
if not append_eos_token: |
|
batch_dict = tokenizer(query, max_length=max_length, padding=True, truncation=True, return_tensors='pt').to(rank) |
|
else: |
|
batch_dict = tokenizer([q+tokenizer.eos_token for q in query], max_length=max_length, padding=True, truncation=True, return_tensors='pt').to(rank) |
|
|
|
with torch.no_grad(): |
|
with torch.cuda.amp.autocast(): |
|
outputs = model(**batch_dict) |
|
if pooling == 'eos': |
|
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
elif pooling == 'average': |
|
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
elif pooling == 'cls': |
|
embeddings = outputs.last_hidden_state[:, 0] |
|
elif pooling == 'mean': |
|
embeddings = mean_pooling(outputs, batch_dict['attention_mask']) |
|
else: |
|
raise Exception("Pooling not defined") |
|
if normalize: |
|
encoding = F.normalize(embeddings, p=2, dim=1).cpu().detach().numpy() |
|
else: |
|
encoding = embeddings.cpu().detach().numpy() |
|
|
|
return { |
|
'encoding' : encoding, |
|
'id' : query_id |
|
} |
|
|
|
|
|
def distributed_embedding(ds, embed_function, batch_size, sort=True, value_to_sort='text'): |
|
|
|
rank = torch.distributed.get_rank() |
|
|
|
ds_shard_filepaths = [ |
|
os.path.join('./CACHE', f"{ds._fingerprint}_subshard_{w}.cache") |
|
for w in range(0, world_size) |
|
] |
|
print(f"\tworker {rank} saving sub-shard to {ds_shard_filepaths[rank]}") |
|
ds_shard = ds.shard( |
|
num_shards=world_size, |
|
index=rank, |
|
contiguous=True, |
|
) |
|
|
|
if sort: |
|
ds_shard = ds_shard.map(lambda x: {'len' : len(x[value_to_sort])}, num_proc=64) |
|
ds_shard = ds_shard.sort('len', reverse=True) |
|
|
|
|
|
ds_shard = ds_shard.map(embed_function, batched=True, batch_size=batch_size, remove_columns=ds.column_names, load_from_cache_file=False) |
|
|
|
|
|
ds_shard.save_to_disk(ds_shard_filepaths[rank]) |
|
print("rank", rank, "saving:", ds_shard_filepaths[rank]) |
|
|
|
|
|
torch.distributed.barrier() |
|
|
|
full_dataset = concatenate_datasets( |
|
[ds.load_from_disk(p) for p in ds_shard_filepaths] |
|
) |
|
|
|
torch.distributed.barrier() |
|
print("rank", rank, "deleting:", ds_shard_filepaths[rank]) |
|
shutil.rmtree(ds_shard_filepaths[rank]) |
|
return full_dataset |
|
|
|
|
|
|
|
def main(rank, args): |
|
|
|
|
|
warnings.filterwarnings('ignore') |
|
datasets.logging.set_verbosity_error() |
|
|
|
|
|
queries = load_dataset(args.queries) |
|
queries = queries[args.queries_split] |
|
|
|
batch_size = args.batch_size |
|
corpus = load_dataset(args.corpus) |
|
corpus = corpus[args.corpus_split] |
|
|
|
if args.tokenizer is None: |
|
tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True) |
|
else: |
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer, trust_remote_code=True) |
|
|
|
if args.sentence: |
|
model = SentenceTransformer(args.model, device=rank) |
|
model.max_seq_length = 512 |
|
else: |
|
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, attn_implementation="flash_attention_2" if 'gemma' in args.model else None, torch_dtype=torch.bfloat16).to(rank).eval() |
|
|
|
|
|
if rank == 0: |
|
|
|
pathlib.Path(args.output_dir,).mkdir(parents=True, exist_ok=True) |
|
|
|
print("-"*10) |
|
|
|
print('CORPUS embedding...') |
|
|
|
corpus_embedding = distributed_embedding(corpus, partial(embed_corpus, model=model, tokenizer=tokenizer, prefix=args.passage_prefix, pooling=args.pooling, append_eos_token=args.append_eos_token, sentence=args.sentence, normalize=args.normalize), batch_size=batch_size, sort=True, value_to_sort='text') |
|
|
|
if rank == 0: |
|
print('Saving embedding...') |
|
with open(os.path.join(args.output_dir,"corpus_emb.pkl"), 'wb') as f: |
|
pickle.dump((np.asarray(corpus_embedding['encoding'], dtype=np.float32), corpus_embedding['id']), f) |
|
print('Embedding saved!') |
|
|
|
torch.distributed.barrier() |
|
print('QUERIES embedding...') |
|
|
|
queries_embedding = distributed_embedding(queries, partial(embed_queries, model=model, tokenizer=tokenizer, prefix=args.query_prefix, pooling=args.pooling, append_eos_token=args.append_eos_token, sentence=args.sentence, normalize=args.normalize), batch_size=batch_size, sort=False) |
|
|
|
if rank == 0: |
|
print('Saving embedding...') |
|
with open(os.path.join(args.output_dir,"query_emb.pkl"), 'wb') as f: |
|
pickle.dump((np.asarray(queries_embedding['encoding'], dtype=np.float32), queries_embedding['id']), f) |
|
print('Embedding saved!') |
|
|
|
|
|
if rank == 0: |
|
print("-"*10) |
|
|
|
print('Retrieval...') |
|
command = [ |
|
"/opt/conda/envs/retrieval/bin/python", "-m", "tevatron.faiss_retriever", |
|
"--query_reps", os.path.join(args.output_dir,"query_emb.pkl"), |
|
"--passage_reps", os.path.join(args.output_dir,"corpus_emb.pkl"), |
|
"--depth", "100", |
|
"--batch_size", "-1", |
|
"--save_text", |
|
"--save_ranking_to", os.path.join(args.output_dir,"rank.txt") |
|
] |
|
proc = subprocess.run(command, capture_output=True, text=True) |
|
|
|
print("Output:", proc.stdout) |
|
|
|
|
|
print('Converting to MARCO format...') |
|
command = [ |
|
"/opt/conda/envs/retrieval/bin/python", "-m", "tevatron.utils.format.convert_result_to_marco", |
|
"--input", os.path.join(args.output_dir,"rank.txt"), |
|
"--output", os.path.join(args.output_dir,"rank.txt.marco"), |
|
] |
|
proc = subprocess.run(command, capture_output=True, text=True) |
|
print("Output:", proc.stdout) |
|
|
|
|
|
print("Computing metrics...") |
|
command = [ |
|
"/opt/conda/envs/retrieval/bin/python", "-m", "pyserini.eval.trec_eval", |
|
"-c", "-M", "100", |
|
"-m", "ndcg_cut.10", |
|
"-m", "recall.100", |
|
"-m", "recip_rank", |
|
args.qrels, |
|
os.path.join(args.output_dir,"rank.txt.marco"), |
|
] |
|
proc = subprocess.run(command, capture_output=True, text=True) |
|
print("Output:", proc.stdout) |
|
|
|
return 'Done' |
|
return |
|
|
|
if __name__ == "__main__": |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
rank = int(os.environ.get('LOCAL_RANK')) |
|
torch.distributed.init_process_group("nccl", rank=rank, world_size=2) |
|
|
|
world_size = torch.distributed.get_world_size() |
|
print('Initialized') |
|
|
|
parser = argparse.ArgumentParser(description="Evaluation of retrieval embedding model") |
|
|
|
|
|
parser.add_argument('--model', type=str, required=True, help='Model to evaluate') |
|
parser.add_argument('--batch-size', type=int, required=False, default=256, help="Batch size for eval") |
|
parser.add_argument('--pooling', type=str, required=True, help='Pooling to use') |
|
parser.add_argument('--append-eos-token', action="store_true", required=False, default=False, help='If append eos to sentences and queries') |
|
parser.add_argument('--normalize', type=bool, required=False, default=True, help='If normalize embedding') |
|
parser.add_argument('--sentence', action="store_true", required=False, default=False, help='If append eos to sentences and queries') |
|
|
|
parser.add_argument('--tokenizer', type=str, required=False, default=None, help='Tokenizer of the model') |
|
|
|
parser.add_argument('--corpus', type=str, required=True, help='Corpus dataset') |
|
parser.add_argument('--corpus-split', type=str, required=False, default='dev', help='Corpus split') |
|
|
|
parser.add_argument('--queries', type=str, required=True, help='Queries dataset') |
|
parser.add_argument('--queries-split', type=str, required=False, default='dev', help='Queries split') |
|
|
|
parser.add_argument('--query-prefix', type=str, required=False, default='query: ', help='Queries prefix') |
|
parser.add_argument('--passage-prefix', type=str, required=False, default='passage: ', help='Passages prefix split') |
|
|
|
parser.add_argument('--output-dir', type=str, required=True, help='Directory where to save results') |
|
parser.add_argument('--qrels', type=str, required=True, help='Path to qrels for evaluation') |
|
|
|
args = parser.parse_args() |
|
|
|
main(rank, args) |