|
import hashlib |
|
import inspect |
|
import json |
|
import tempfile |
|
from datetime import datetime |
|
from functools import lru_cache |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
from datasets import Dataset, DatasetDict, IterableDataset, IterableDatasetDict |
|
from datasets.exceptions import DatasetGenerationError |
|
|
|
from .artifact import fetch_artifact |
|
from .card import TaskCard |
|
from .dataset_utils import get_dataset_artifact |
|
from .error_utils import UnitxtError |
|
from .inference import ( |
|
InferenceEngine, |
|
LogProbInferenceEngine, |
|
OptionSelectingByLogProbsInferenceEngine, |
|
) |
|
from .loaders import LoadFromDictionary |
|
from .logging_utils import get_logger |
|
from .metric_utils import EvaluationResults, _compute, _inference_post_process |
|
from .operator import SourceOperator |
|
from .schema import loads_instance |
|
from .settings_utils import get_constants, get_settings |
|
from .standard import DatasetRecipe |
|
from .task import Task |
|
|
|
logger = get_logger() |
|
constants = get_constants() |
|
settings = get_settings() |
|
|
|
|
|
def short_hex_hash(value, length=8): |
|
h = hashlib.sha256(value.encode()).hexdigest() |
|
return h[:length] |
|
|
|
|
|
def _get_recipe_from_query(dataset_query: str) -> DatasetRecipe: |
|
dataset_query = dataset_query.replace("sys_prompt", "instruction") |
|
try: |
|
dataset_stream, _ = fetch_artifact(dataset_query) |
|
except: |
|
dataset_stream = get_dataset_artifact(dataset_query) |
|
return dataset_stream |
|
|
|
|
|
def _get_recipe_from_dict(dataset_params: Dict[str, Any]) -> DatasetRecipe: |
|
recipe_attributes = list(DatasetRecipe.__dict__["__fields__"].keys()) |
|
for param in dataset_params.keys(): |
|
assert param in recipe_attributes, ( |
|
f"The parameter '{param}' is not an attribute of the 'DatasetRecipe' class. " |
|
f"Please check if the name is correct. The available attributes are: '{recipe_attributes}'." |
|
) |
|
return DatasetRecipe(**dataset_params) |
|
|
|
|
|
def _verify_dataset_args(dataset_query: Optional[str] = None, dataset_args=None): |
|
if dataset_query and dataset_args: |
|
raise ValueError( |
|
"Cannot provide 'dataset_query' and key-worded arguments at the same time. " |
|
"If you want to load dataset from a card in local catalog, use query only. " |
|
"Otherwise, use key-worded arguments only to specify properties of dataset." |
|
) |
|
|
|
if dataset_query: |
|
if not isinstance(dataset_query, str): |
|
raise ValueError( |
|
f"If specified, 'dataset_query' must be a string, however, " |
|
f"'{dataset_query}' was provided instead, which is of type " |
|
f"'{type(dataset_query)}'." |
|
) |
|
|
|
if not dataset_query and not dataset_args: |
|
raise ValueError( |
|
"Either 'dataset_query' or key-worded arguments must be provided." |
|
) |
|
|
|
|
|
def load_recipe(dataset_query: Optional[str] = None, **kwargs) -> DatasetRecipe: |
|
if isinstance(dataset_query, DatasetRecipe): |
|
return dataset_query |
|
|
|
_verify_dataset_args(dataset_query, kwargs) |
|
|
|
if dataset_query: |
|
recipe = _get_recipe_from_query(dataset_query) |
|
|
|
if kwargs: |
|
recipe = _get_recipe_from_dict(kwargs) |
|
|
|
return recipe |
|
|
|
|
|
def create_dataset( |
|
task: Union[str, Task], |
|
test_set: List[Dict[Any, Any]], |
|
train_set: Optional[List[Dict[Any, Any]]] = None, |
|
validation_set: Optional[List[Dict[Any, Any]]] = None, |
|
split: Optional[str] = None, |
|
**kwargs, |
|
) -> Union[DatasetDict, IterableDatasetDict, Dataset, IterableDataset]: |
|
"""Creates dataset from input data based on a specific task. |
|
|
|
Args: |
|
task: The name of the task from the Unitxt Catalog (https://www.unitxt.ai/en/latest/catalog/catalog.tasks.__dir__.html) |
|
test_set : required list of instances |
|
train_set : optional train_set |
|
validation_set: optional validation set |
|
split: optional one split to choose |
|
**kwargs: Arguments used to load dataset from provided datasets (see load_dataset()) |
|
|
|
Returns: |
|
DatasetDict |
|
|
|
Example: |
|
template = Template(...) |
|
dataset = create_dataset(task="tasks.qa.open", template=template, format="formats.chatapi") |
|
""" |
|
data = {"test": test_set} |
|
if train_set is not None: |
|
data["train"] = train_set |
|
if validation_set is not None: |
|
data["validation"] = validation_set |
|
task, _ = fetch_artifact(task) |
|
|
|
if "template" not in kwargs and task.default_template is None: |
|
raise Exception( |
|
f"No 'template' was passed to the create_dataset() and the given task ('{task.__id__}') has no 'default_template' field." |
|
) |
|
|
|
card = TaskCard(loader=LoadFromDictionary(data=data), task=task) |
|
return load_dataset(card=card, split=split, **kwargs) |
|
|
|
|
|
def _source_to_dataset( |
|
source: SourceOperator, split=None, use_cache=False, streaming=False |
|
): |
|
from .dataset import Dataset as UnitxtDataset |
|
|
|
stream = source() |
|
|
|
with tempfile.TemporaryDirectory() as dir_to_be_deleted: |
|
cache_dir = dir_to_be_deleted if not use_cache else None |
|
ds_builder = UnitxtDataset( |
|
dataset_name="unitxt", |
|
config_name="recipe-" + short_hex_hash(repr(source)), |
|
hash=hash(repr(source)), |
|
version=constants.version, |
|
cache_dir=cache_dir, |
|
) |
|
if split is not None: |
|
stream = {split: stream[split]} |
|
ds_builder._generators = stream |
|
|
|
try: |
|
ds_builder.download_and_prepare() |
|
|
|
if streaming: |
|
return ds_builder.as_streaming_dataset(split=split) |
|
|
|
return ds_builder.as_dataset( |
|
split=split, run_post_process=False, verification_mode="no_checks" |
|
) |
|
except DatasetGenerationError as e: |
|
raise e.__cause__ |
|
|
|
|
|
def load_dataset( |
|
dataset_query: Optional[str] = None, |
|
split: Optional[str] = None, |
|
streaming: bool = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Union[DatasetDict, IterableDatasetDict, Dataset, IterableDataset]: |
|
"""Loads dataset. |
|
|
|
If the 'dataset_query' argument is provided, then dataset is loaded from a card |
|
in local catalog based on parameters specified in the query. |
|
|
|
Alternatively, dataset is loaded from a provided card based on explicitly |
|
given parameters. |
|
|
|
Args: |
|
dataset_query (str, optional): |
|
A string query which specifies a dataset to load from |
|
local catalog or name of specific recipe or benchmark in the catalog. For |
|
example, ``"card=cards.wnli,template=templates.classification.multi_class.relation.default"``. |
|
streaming (bool, False): |
|
When True yields the data as a stream. |
|
This is useful when loading very large datasets. |
|
Loading datasets as streams avoid loading all the data to memory, but requires the dataset's loader to support streaming. |
|
split (str, optional): |
|
The split of the data to load |
|
use_cache (bool, optional): |
|
If set to True, the returned Huggingface dataset is cached on local disk such that if the same dataset is loaded again, it will be loaded from local disk, resulting in faster runs. |
|
If set to False (default), the returned dataset is not cached. |
|
Note that if caching is enabled and the dataset card definition is changed, the old version in the cache may be returned. |
|
Enable caching only if you are sure you are working with fixed Unitxt datasets and definitions (e.g. running using predefined datasets from the Unitxt catalog). |
|
**kwargs: |
|
Arguments used to load dataset from provided card, which is not present in local catalog. |
|
|
|
Returns: |
|
DatasetDict |
|
|
|
:Example: |
|
|
|
.. code-block:: python |
|
|
|
dataset = load_dataset( |
|
dataset_query="card=cards.stsb,template=templates.regression.two_texts.simple,max_train_instances=5" |
|
) # card and template must be present in local catalog |
|
|
|
# or built programmatically |
|
card = TaskCard(...) |
|
template = Template(...) |
|
loader_limit = 10 |
|
dataset = load_dataset(card=card, template=template, loader_limit=loader_limit) |
|
|
|
""" |
|
recipe = load_recipe(dataset_query, **kwargs) |
|
|
|
dataset = _source_to_dataset( |
|
source=recipe, split=split, use_cache=use_cache, streaming=streaming |
|
) |
|
|
|
frame = inspect.currentframe() |
|
args, _, _, values = inspect.getargvalues(frame) |
|
all_kwargs = {key: values[key] for key in args if key != "kwargs"} |
|
all_kwargs.update(kwargs) |
|
metadata = fill_metadata(**all_kwargs) |
|
if isinstance(dataset, dict): |
|
for ds in dataset.values(): |
|
ds.info.description = metadata.copy() |
|
else: |
|
dataset.info.description = metadata |
|
return dataset |
|
|
|
|
|
def fill_metadata(**kwargs): |
|
metadata = kwargs.copy() |
|
metadata["unitxt_version"] = get_constants().version |
|
metadata["creation_time"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3] |
|
return metadata |
|
|
|
|
|
def evaluate( |
|
predictions, dataset: Union[Dataset, IterableDataset] = None, data=None |
|
) -> EvaluationResults: |
|
if dataset is None and data is None: |
|
raise UnitxtError(message="Specify 'dataset' in evaluate") |
|
if data is not None: |
|
dataset = data |
|
evaluation_result = _compute(predictions=predictions, references=dataset) |
|
if hasattr(dataset, "info") and hasattr(dataset.info, "description"): |
|
evaluation_result.metadata["dataset"] = dataset.info.description |
|
if hasattr(predictions, "metadata"): |
|
evaluation_result.metadata["predictions"] = predictions.metadata |
|
evaluation_result.metadata["creation_time"] = datetime.now().strftime( |
|
"%Y-%m-%d %H:%M:%S.%f" |
|
)[:-3] |
|
return evaluation_result |
|
|
|
|
|
def post_process(predictions, data) -> List[Dict[str, Any]]: |
|
return _inference_post_process(predictions=predictions, references=data) |
|
|
|
|
|
@lru_cache |
|
def _get_produce_with_cache(dataset_query: Optional[str] = None, **kwargs): |
|
return load_recipe(dataset_query, **kwargs).produce |
|
|
|
|
|
def produce( |
|
instance_or_instances, dataset_query: Optional[str] = None, **kwargs |
|
) -> Union[Dataset, Dict[str, Any]]: |
|
is_list = isinstance(instance_or_instances, list) |
|
if not is_list: |
|
instance_or_instances = [instance_or_instances] |
|
result = _get_produce_with_cache(dataset_query, **kwargs)(instance_or_instances) |
|
if not is_list: |
|
return result[0] |
|
return Dataset.from_list(result).with_transform(loads_instance) |
|
|
|
|
|
def infer( |
|
instance_or_instances, |
|
engine: InferenceEngine, |
|
dataset_query: Optional[str] = None, |
|
return_data: bool = False, |
|
return_log_probs: bool = False, |
|
return_meta_data: bool = False, |
|
previous_messages: Optional[List[Dict[str, str]]] = None, |
|
**kwargs, |
|
): |
|
dataset = produce(instance_or_instances, dataset_query, **kwargs) |
|
if previous_messages is not None: |
|
|
|
def add_previous_messages(example, index): |
|
example["source"] = previous_messages[index] + example["source"] |
|
return example |
|
|
|
dataset = dataset.map(add_previous_messages, with_indices=True) |
|
engine, _ = fetch_artifact(engine) |
|
if return_log_probs: |
|
if not isinstance(engine, LogProbInferenceEngine): |
|
raise NotImplementedError( |
|
f"Error in infer: return_log_probs set to True but supplied engine " |
|
f"{engine.__class__.__name__} does not support logprobs." |
|
) |
|
infer_outputs = engine.infer_log_probs(dataset, return_meta_data) |
|
raw_predictions = ( |
|
[output.prediction for output in infer_outputs] |
|
if return_meta_data |
|
else infer_outputs |
|
) |
|
raw_predictions = [ |
|
json.dumps(raw_prediction) for raw_prediction in raw_predictions |
|
] |
|
else: |
|
infer_outputs = engine.infer(dataset, return_meta_data) |
|
raw_predictions = ( |
|
[output.prediction for output in infer_outputs] |
|
if return_meta_data |
|
else infer_outputs |
|
) |
|
predictions = post_process(raw_predictions, dataset) |
|
if return_data: |
|
if return_meta_data: |
|
infer_output_list = [ |
|
infer_output.__dict__ for infer_output in infer_outputs |
|
] |
|
for infer_output in infer_output_list: |
|
del infer_output["prediction"] |
|
dataset = dataset.add_column("infer_meta_data", infer_output_list) |
|
dataset = dataset.add_column("prediction", predictions) |
|
return dataset.add_column("raw_prediction", raw_predictions) |
|
return predictions |
|
|
|
|
|
def select( |
|
instance_or_instances, |
|
engine: OptionSelectingByLogProbsInferenceEngine, |
|
dataset_query: Optional[str] = None, |
|
return_data: bool = False, |
|
previous_messages: Optional[List[Dict[str, str]]] = None, |
|
**kwargs, |
|
): |
|
dataset = produce(instance_or_instances, dataset_query, **kwargs) |
|
if previous_messages is not None: |
|
|
|
def add_previous_messages(example, index): |
|
example["source"] = previous_messages[index] + example["source"] |
|
return example |
|
|
|
dataset = dataset.map(add_previous_messages, with_indices=True) |
|
engine, _ = fetch_artifact(engine) |
|
predictions = engine.select(dataset) |
|
|
|
if return_data: |
|
return dataset.add_column("prediction", predictions) |
|
return predictions |
|
|