Datasets:
Tasks:
Image Classification
Modalities:
Image
Sub-tasks:
multi-class-image-classification
Languages:
Indonesian
Size:
n<1K
License:
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Coffee beans dataset with images.""" | |
import os | |
import datasets | |
from datasets.tasks import ImageClassification | |
_HOMEPAGE="""rasyid.dev/coffee_detection""" | |
_CITATION = """\ | |
N/A | |
""" | |
_DESCRIPTION = """\ | |
Beans is a dataset of images of beans taken in the field using smartphone | |
cameras. It consists of 3 classes: Grade 1, 2 and 3 | |
""" | |
_URLS = { | |
"train": "https://huggingface.co/datasets/rasyidf/coffee-beans/resolve/main/data/train.zip", | |
"validation": "https://huggingface.co/datasets/rasyidf/coffee-beans/resolve/main/data/validation.zip", | |
"test": "https://huggingface.co/datasets/rasyidf/coffee-beans/resolve/main/data/test.zip", | |
} | |
_NAMES = ["1", "2", "3", "0"] | |
class Beans(datasets.GeneratorBasedBuilder): | |
"""Coffee Beans images dataset.""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"image_file_path": datasets.Value("string"), | |
"image": datasets.Image(), | |
"labels": datasets.features.ClassLabel(names=_NAMES), | |
} | |
), | |
supervised_keys=("image", "labels"), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
task_templates=[ImageClassification(image_column="image", label_column="labels")], | |
) | |
def _split_generators(self, dl_manager): | |
data_files = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"files": dl_manager.iter_files([data_files["train"]]), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"files": dl_manager.iter_files([data_files["validation"]]), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"files": dl_manager.iter_files([data_files["test"]]), | |
}, | |
), | |
] | |
def _generate_examples(self, files): | |
for i, path in enumerate(files): | |
file_name = os.path.basename(path) | |
if file_name.endswith(".jpg"): | |
yield i, { | |
"image_file_path": path, | |
"image": path, | |
"labels": os.path.basename(os.path.dirname(path)).lower(), | |
} |