--- dataset_info: features: - name: premise dtype: string - name: entailment dtype: string - name: contradiction dtype: string splits: - name: train num_bytes: 2022859.0657676577 num_examples: 8142 - name: validation num_bytes: 224844.9342323422 num_examples: 905 download_size: 1572558 dataset_size: 2247704 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* language: - ko pretty_name: k size_categories: - 1K
**This dataset was prepared by converting KLUENLI dataset** to use it for contrastive training (SimCSE). The code used to prepare the data is given below: ```py import pandas as pd from datasets import load_dataset, concatenate_datasets, Dataset from torch.utils.data import random_split class PrepTriplets: @staticmethod def make_dataset(): train_dataset = load_dataset("klue", "nli", split="train") val_dataset = load_dataset("klue", "nli", split="validation") merged_dataset = concatenate_datasets([train_dataset, val_dataset]) triplets_dataset = PrepTriplets._get_triplets(merged_dataset) # Split back into train and validation train_size = int(0.9 * len(triplets_dataset)) val_size = len(triplets_dataset) - train_size train_subset, val_subset = random_split( triplets_dataset, [train_size, val_size] ) # Convert Subset objects back to Dataset train_dataset = triplets_dataset.select(train_subset.indices) val_dataset = triplets_dataset.select(val_subset.indices) return train_dataset, val_dataset @staticmethod def _get_triplets(dataset): df = pd.DataFrame(dataset) entailments = df[df["label"] == 0] contradictions = df[df["label"] == 2] triplets = [] for premise in df["premise"].unique(): entailment_hypothesis = entailments[entailments["premise"] == premise][ "hypothesis" ].tolist() contradiction_hypothesis = contradictions[ contradictions["premise"] == premise ]["hypothesis"].tolist() if entailment_hypothesis and contradiction_hypothesis: triplets.append( { "premise": premise, "entailment": entailment_hypothesis[0], "contradiction": contradiction_hypothesis[0], } ) triplets_dataset = Dataset.from_pandas(pd.DataFrame(triplets)) return triplets_dataset # Example usage: # PrepTriplets.make_dataset() ``` **How to download** ``` from datasets import load_dataset data = load_dataset("phnyxlab/klue-nli-simcse") ``` **If you use this dataset for research, please cite this paper:** ``` @misc{park2021klue, title={KLUE: Korean Language Understanding Evaluation}, author={Sungjoon Park and Jihyung Moon and Sungdong Kim and Won Ik Cho and Jiyoon Han and Jangwon Park and Chisung Song and Junseong Kim and Yongsook Song and Taehwan Oh and Joohong Lee and Juhyun Oh and Sungwon Lyu and Younghoon Jeong and Inkwon Lee and Sangwoo Seo and Dongjun Lee and Hyunwoo Kim and Myeonghwa Lee and Seongbo Jang and Seungwon Do and Sunkyoung Kim and Kyungtae Lim and Jongwon Lee and Kyumin Park and Jamin Shin and Seonghyun Kim and Lucy Park and Alice Oh and Jung-Woo Ha and Kyunghyun Cho}, year={2021}, eprint={2105.09680}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```