--- dataset_info: features: - name: text sequence: string - name: labels sequence: class_label: names: '0': O '1': B-NS '2': M-NS '3': E-NS '4': S-NS '5': B-NT '6': M-NT '7': E-NT '8': S-NT '9': B-NR '10': M-NR '11': E-NR '12': S-NR splits: - name: train num_bytes: 32917977 num_examples: 46364 - name: validation num_bytes: 2623860 num_examples: 4365 - name: test num_bytes: 2623860 num_examples: 4365 download_size: 4762958 dataset_size: 38165697 --- ### How to loading dataset? ```python from datasets import load_dataset datasets = load_dataset("minskiter/msra_dev",save_infos=True) train,test = datasets['train'],datasets['test'] # convert label to str print(train.features['labels'].feature.int2str(0)) ``` ### Force update ```python from datasets import load_dataset datasets = load_dataset("minskiter/msra_dev", download_mode="force_redownload") ``` ### Fit your train ```python def transform(example): # edit example here return example for key in datasets: datasets[key] = datasets.map(transform) ```