|
import datasets |
|
from datasets.download.download_manager import DownloadManager |
|
import pyarrow.parquet as pq |
|
|
|
_DESCRIPTION = """\ |
|
The MSRA NER dataset is a Chinese Named Entity Recognition dataset |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{levow-2006-third, |
|
title = "The Third International {C}hinese Language Processing Bakeoff: Word Segmentation and Named Entity Recognition", |
|
author = "Levow, Gina-Anne", |
|
booktitle = "Proceedings of the Fifth {SIGHAN} Workshop on {C}hinese Language Processing", |
|
month = jul, |
|
year = "2006", |
|
address = "Sydney, Australia", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/W06-0115", |
|
pages = "108--117", |
|
} |
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/minskiter/msra_dev/resolve/main/" |
|
_URLS = { |
|
"train": _URL + "data/train.parquet", |
|
'validation': _URL + "data/validation.parquet", |
|
"test": _URL + "data/test.parquet", |
|
} |
|
|
|
class MSRANamedEntities(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"labels": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
'O', |
|
'B-NS', |
|
'M-NS', |
|
'E-NS', |
|
'S-NS', |
|
'B-NT', |
|
'M-NT', |
|
'E-NT', |
|
'S-NT', |
|
'B-NR', |
|
'M-NR', |
|
'E-NR', |
|
'S-NR' |
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://aclanthology.org/W06-0115/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager): |
|
urls_to_download = _URLS |
|
download_files = dl_manager.download_and_extract(urls_to_download) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": download_files["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": download_files["validation"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": download_files["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath,"rb") as f: |
|
with pq.ParquetFile(f) as file: |
|
_id = -1 |
|
for i in file.iter_batches(batch_size=64): |
|
rows = i.to_pylist() |
|
for row in rows: |
|
_id+=1 |
|
yield _id, row |
|
|