# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Introduction to the Bio-Entity Recognition Task at JNLPBA""" import glob import os import re import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @inproceedings{kim2004introduction, title={Introduction to the bio-entity recognition task at JNLPBA}, author={Kim, Jin-Dong and Ohta, Tomoko and Tsuruoka, Yoshimasa and Tateisi, Yuka and Collier, Nigel}, booktitle={Proceedings of the international joint workshop on natural language processing in biomedicine and its applications}, pages={70--75}, year={2004}, organization={Citeseer} } """ _DESCRIPTION = """\ The data came from the GENIA version 3.02 corpus (Kim et al., 2003). This was formed from a controlled search on MEDLINE using the MeSH terms human, blood cells and transcription factors. From this search 2,000 abstracts were selected and hand annotated according to a small taxonomy of 48 classes based on a chemical classification. Among the classes, 36 terminal classes were used to annotate the GENIA corpus. """ _HOMEPAGE = "http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004" TRAIN_URL = "http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Train/Genia4ERtraining.tar.gz" VAL_URL = "http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Evaluation/Genia4ERtest.tar.gz" TEST_URL = "http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Tool/JNLPBA2004_eval.tar.gz" class JNLPBAConfig(datasets.BuilderConfig): """BuilderConfig for JNLPBA""" def __init__(self, **kwargs): """BuilderConfig for JNLPBA. Args: **kwargs: keyword arguments forwarded to super. """ super(JNLPBAConfig, self).__init__(**kwargs) class JNLPBA(datasets.GeneratorBasedBuilder): """JNLPBA dataset.""" BUILDER_CONFIGS = [ JNLPBAConfig(name="jnlpba", version=datasets.Version("1.0.0"), description="JNLPBA dataset"), ] def _info(self): custom_names = ['O','B-GENE','I-GENE','B-CHEMICAL','I-CHEMICAL','B-DISEASE','I-DISEASE', 'B-DNA', 'I-DNA', 'B-RNA', 'I-RNA', 'B-CELL_LINE', 'I-CELL_LINE', 'B-CELL_TYPE', 'I-CELL_TYPE', 'B-PROTEIN', 'I-PROTEIN', 'B-SPECIES', 'I-SPECIES'] return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=custom_names ) ), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" train_files = dl_manager.download_and_extract(TRAIN_URL) val_files = dl_manager.download_and_extract(VAL_URL) # test_files = dl_manager.download_and_extract(TEST_URL) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_files}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_files}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": val_files}), ] def _generate_examples(self, filepath): logger.info("⏳ Generating examples from = %s", filepath) filenames = glob.glob(os.path.join(filepath, "Genia4ER*.iob2")) guid = 0 for filename in filenames: with open(filename, encoding="utf-8") as f: if guid >= 0: guid += 1 # update guid to avoid DuplicatedKeysError tokens = [] ner_tags = [] for line in f: if len(re.split(r"###MEDLINE:", line)) == 2: continue elif line == "" or line == "\n": if tokens: # print(guid, line) yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, } guid += 1 tokens = [] ner_tags = [] else: # tokens are tab separated splits = line.split("\t") tokens.append(splits[0]) if(splits[1].rstrip()=="B-cell_line"): ner_tags.append("B-CELL_LINE") elif(splits[1].rstrip()=="I-cell_line"): ner_tags.append("I-CELL_LINE") elif(splits[1].rstrip()=="B-cell_type"): ner_tags.append("B-CELL_TYPE") elif(splits[1].rstrip()=="I-cell_type"): ner_tags.append("I-CELL_TYPE") elif(splits[1].rstrip()=="B-protein"): ner_tags.append("B-PROTEIN") elif(splits[1].rstrip()=="I-protein"): ner_tags.append("I-PROTEIN") else: ner_tags.append(splits[1].rstrip()) # last example yield guid, { "id": str(guid), "tokens": tokens, "ner_tags": ner_tags, }