|
from datasets import DatasetInfo, GeneratorBasedBuilder, Split, SplitGenerator, load_dataset, Features, Value
|
|
|
|
|
|
class GeneutralDataset(GeneratorBasedBuilder):
|
|
"""
|
|
This dataset filters entries from BookCorpus based on provided indices in the Geneutral dataset.
|
|
"""
|
|
|
|
_CITATION = """
|
|
@misc{drechsel2025gradiendmonosemanticfeaturelearning,
|
|
title={{GRADIEND}: Monosemantic Feature Learning within Neural Networks Applied to Gender Debiasing of Transformer Models},
|
|
author={Jonathan Drechsel and Steffen Herbold},
|
|
year={2025},
|
|
eprint={2502.01406},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.LG},
|
|
url={https://arxiv.org/abs/2502.01406},
|
|
}
|
|
"""
|
|
|
|
def _info(self):
|
|
return DatasetInfo(
|
|
description="This dataset consists of BookCorpus entries containing only gender-neutral words (excluding e.g., he, actor, ...).",
|
|
features=Features({
|
|
"index": Value("int32"),
|
|
"text": Value("string"),
|
|
}),
|
|
supervised_keys=None,
|
|
citation=self._CITATION,
|
|
)
|
|
|
|
def _split_generators(self, dl_manager):
|
|
|
|
index_file_url = "https://huggingface.co/datasets/aieng-lab/geneutral/resolve/main/indices.csv"
|
|
|
|
|
|
indices_file = dl_manager.download_and_extract(index_file_url)
|
|
|
|
|
|
print("Loading BookCorpus dataset...")
|
|
bookcorpus = load_dataset('bookcorpus', trust_remote_code=True)['train']
|
|
print("BookCorpus dataset loaded.")
|
|
|
|
return [
|
|
SplitGenerator(name=Split.TRAIN, gen_kwargs={"indices_file": indices_file, "bookcorpus": bookcorpus}),
|
|
]
|
|
|
|
def _generate_examples(self, indices_file: str, bookcorpus):
|
|
"""
|
|
Generate examples by filtering the BookCorpus dataset using provided indices.
|
|
"""
|
|
|
|
|
|
with open(indices_file, "r", encoding="utf-8") as f:
|
|
next(f)
|
|
indices_set = {int(line.strip().split(",")[0]) for line in f}
|
|
|
|
|
|
for idx, sample in enumerate(bookcorpus):
|
|
if idx in indices_set:
|
|
yield idx, {"index": idx, "text": sample['text']}
|
|
|