File size: 2,099 Bytes
0913a62 c40436c e0f2707 41e4dc9 283d943 6ccce9b 283d943 f7d14bc 41e4dc9 7ce248b b553e2e 48e90ae a1afccc 48e90ae 283d943 a1afccc 48e90ae 0f3e420 9faa859 3182d09 0f3e420 9faa859 3182d09 0f3e420 a1afccc 0f3e420 a63d9a1 a47a2c0 b553e2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: cc-by-nc-4.0
task_categories:
- text-to-video
language:
- en
size_categories:
- 1M<n<10M
tags:
- prompts
- text-to-video
---
<img src="https://huggingface.co/datasets/WenhaoWang/VidProM/resolve/main/teasor.png">
# Summary
This is the dataset proposed in our paper "VidProM: A Million-scale Real Prompt-Gallery Dataset for Text-to-Video Diffusion Models"
VidProM is the first dataset featuring 1.67 million unique text-to-video prompts and 6.69 million videos generated from 4 different state-of-the-art diffusion models.
It inspires many exciting new research areas, such as Text-to-Video Prompt Engineering, Efficient Video Generation, Fake Video Detection, and Video Copy Detection for Diffusion Models.
# Directory
```
*DATA_PATH
*VidProM_unique.csv
*VidProM_semantic_unique.csv
*VidProM_embed.hdf5
*original_files
*generate_1_ori.html
*generate_2_ori.html
...
*pika_videos
*pika_videos_1.tar
*pika_videos_2.tar
...
*vc2_videos
*vc2_videos_1.tar
*vc2_videos_2.tar
...
*t2vz_videos
*t2vz_videos_1.tar
*t2vz_videos_2.tar
...
*ms_videos
*ms_videos_1.tar
*ms_videos_2.tar
...
```
# Download
### Automatically
Install the [datasets](https://huggingface.co/docs/datasets/v1.15.1/installation.html) library first, by:
```
pip install datasets
```
Then it can be downloaded automatically with
```
import numpy as np
from datasets import load_dataset
dataset = load_dataset('WenhaoWang/VidProM')
```
### Manual
You can download each file by ```wget```, for instance:
```
wget https://huggingface.co/datasets/WenhaoWang/VidProM/resolve/main/VidProM_unique.csv
```
# Explanation
```
VidProM_unique.csv
```
# Datapoint
<img src="https://huggingface.co/datasets/WenhaoWang/VidProM/resolve/main/datapoint.png">
# Comparison with DiffusionDB
<img src="https://huggingface.co/datasets/WenhaoWang/VidProM/resolve/main/compare_table.png">
<img src="https://huggingface.co/datasets/WenhaoWang/VidProM/resolve/main/compare_visual.png">
Please check our paper for a detailed comparison.
# Citation
|